A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed w...A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.展开更多
The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation...The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation stage.To overcome these limitations,the calculation boundary and calculation method for carbon emission of foundation pit project are defined in this paper,which is successfully applied in the carbon emission analysis of the actual engineering project,i.e.the construction of large-scale foundation pit of Kunming comprehensive transportation international hub.All the carbon emissions coresponding to four working stages including building materials production,building materials transportation,construction and demolition were calculated and anatomized.The results revealed that the content of CO_(2) released in the stage of building materials production accounts for 89.3%of the total carbon emission,which means the amount of building materials consumed in the engineering project is the crucial factor to control the carbon emission.Besides,two kinds of carbon reduction measures,i.e.optimization design of support scheme and recycling waste materials of internal support demolition,were explored by analyzing the proportion and average value of carbon emission from different sub project of the support structure.A pronounced effect of carbon reduction was achieved.Furthermore,both a fast calculation method of carbon emission factor of unit work volume and general carbon reduction measures are proposed in this paper,which could provide a reference and new viewpoint for the engineers and designers to calculate and analyze the carbon emission and to take effective carbon reduction measures.展开更多
基金Foundation item: Project(2009-K3-2) supported by the Ministry of Housing and Urban-Rural Development of China
文摘A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation.
基金supported by Science and Technology Program of the Ministry of Housing and Urban-Rural Development[2022-S-031]CSCEC1B Technical and Development Plan[Grant No.CSCEC1B-2021-33].
文摘The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation stage.To overcome these limitations,the calculation boundary and calculation method for carbon emission of foundation pit project are defined in this paper,which is successfully applied in the carbon emission analysis of the actual engineering project,i.e.the construction of large-scale foundation pit of Kunming comprehensive transportation international hub.All the carbon emissions coresponding to four working stages including building materials production,building materials transportation,construction and demolition were calculated and anatomized.The results revealed that the content of CO_(2) released in the stage of building materials production accounts for 89.3%of the total carbon emission,which means the amount of building materials consumed in the engineering project is the crucial factor to control the carbon emission.Besides,two kinds of carbon reduction measures,i.e.optimization design of support scheme and recycling waste materials of internal support demolition,were explored by analyzing the proportion and average value of carbon emission from different sub project of the support structure.A pronounced effect of carbon reduction was achieved.Furthermore,both a fast calculation method of carbon emission factor of unit work volume and general carbon reduction measures are proposed in this paper,which could provide a reference and new viewpoint for the engineers and designers to calculate and analyze the carbon emission and to take effective carbon reduction measures.