期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
机器学习在水系沉积物地球化学采样下伏基岩填图中的应用 被引量:1
1
作者 黄栋良 李曼懿 +2 位作者 王丽芳 浣雨柯 张宝一 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2023年第1期61-78,共18页
为了探索高效且能大区域应用的基岩填图方式,本文整合水系沉积物地球化学数据和局部空间Moran’s I指数、高程、坡度、坡向变率、高磁、断层、矿点、水系等多元地学数据作为附加特征,采用浅层机器学习决策树及其Bagging和Boosting集成算... 为了探索高效且能大区域应用的基岩填图方式,本文整合水系沉积物地球化学数据和局部空间Moran’s I指数、高程、坡度、坡向变率、高磁、断层、矿点、水系等多元地学数据作为附加特征,采用浅层机器学习决策树及其Bagging和Boosting集成算法,以及深度学习的图卷积网络,分别训练了不同的基岩判别模型。结果表明,相比浅层机器学习的决策树及其集成算法,深度学习的图卷积神经网络基岩判别模型仅使用20%带标签数据就获得了最高的78.31%判别精度。应用基于图卷积网络的基岩类型判别模型对察汗乌苏河地区第四系覆盖物下伏基岩填图,预测结果与其周边基岩类型协调一致,该模型可用来探究更全面的区域基岩分布情况。 展开更多
关键词 决策树 BAGGING BOOSTING 图卷积 地球化学 基岩判别
下载PDF
花岗岩球状风化体地下分布规律分析与在桩基础施工中判别及利用 被引量:3
2
作者 张维泉 《福建建设科技》 2018年第2期27-29,共3页
花岗岩球状风化体(俗称孤石)发育特征对桩基础施工工期、成本及质量有较大影响。本文选取一个孤石集中发育的典型工程项目,从场地各风化层孤石数量、孤石揭露厚度及孤石分布层数三个方面进行统计并分析其分布规律,同时总结了孤石与基岩... 花岗岩球状风化体(俗称孤石)发育特征对桩基础施工工期、成本及质量有较大影响。本文选取一个孤石集中发育的典型工程项目,从场地各风化层孤石数量、孤石揭露厚度及孤石分布层数三个方面进行统计并分析其分布规律,同时总结了孤石与基岩在桩基础施工过程中判别及利用的经验,希望为类似工程提供借鉴。 展开更多
关键词 花岗岩球状风化体 孤石 规律分析 桩基础 基岩判别
下载PDF
Machine learning strategies for lithostratigraphic classification based on geochemical sampling data: A case study in area of Chahanwusu River, Qinghai Province, China 被引量:5
3
作者 ZHANG Bao-yi LI Man-yi +4 位作者 LI Wei-xia JIANG Zheng-wen Umair KHAN WANG Li-fang WANG Fan-yun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1422-1447,共26页
Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four mach... Based on the complex correlation between the geochemical element distribution patterns at the surface and the types of bedrock and the powerful capabilities in capturing subtle of machine learning algorithms,four machine learning algorithms,namely,decision tree(DT),random forest(RF),XGBoost(XGB),and LightGBM(LGBM),were implemented for the lithostratigraphic classification and lithostratigraphic prediction of a quaternary coverage area based on stream sediment geochemical sampling data in the Chahanwusu River of Dulan County,Qinghai Province,China.The local Moran’s I to represent the features of spatial autocorrelations,and terrain factors to represent the features of surface geological processes,were calculated as additional features.The accuracy,precision,recall,and F1 scores were chosen as the evaluation indices and Voronoi diagrams were applied for visualization.The results indicate that XGB and LGBM models both performed well.They not only obtained relatively satisfactory classification performance but also predicted lithostratigraphic types of the Quaternary coverage area that are essentially consistent with their neighborhoods which have the known types.It is feasible to classify the lithostratigraphic types through the concentrations of geochemical elements in the sediments,and the XGB and LGBM algorithms are recommended for lithostratigraphic classification. 展开更多
关键词 machine learning geochemical sampling lithostratigraphic classification lithostratigraphic prediction BEDROCK
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部