Using the Splitting Hopkinson Pressure Bar (SHPB) experimental system, investigations were made into the dynamic mechanical performances of underground soft rocks. The experiments proved that the measured stress-str...Using the Splitting Hopkinson Pressure Bar (SHPB) experimental system, investigations were made into the dynamic mechanical performances of underground soft rocks. The experiments proved that the measured stress-strain curves display the characteristics of plastic deformation. By making use of a revised overstress constitutive formula for the stress model and by taking into account that the strain rate and strain are a function of I - E(t)/Eo, a revised overstress constitutive formula for the stress model was simplified by applying dimensional analysis and consequently, a simplified overstress formula was obtained for the stress model. Then, by taking into consideration the effects of damage under a dynamic load on the dynamic loading strength of the rock, the continuous damage theory and the statistical strength theory were introduced into the development of the simplified overstress constitutive formula for the stress model. Hence, a damage-based constitutive formula for an overstress model, which can be appropriately applied to the analysis of full dynamic stress-strain curves, was developed. By using the simplified damage-based constitutive formula for an overstress model, the actually measured curves are fitted, indicating that the fitting curves and those actually measured are in good agreement.展开更多
An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medi...An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medium model established by Boer, while the pile is described by a beam vibration theory. By using separation theory of differential operator and variables to solve the dynamic governing equations for the soil, the fundamental solutions for the soil reactions on side and bottom of the pile are obtained. The dynamic impedance of the pile head is then derived by solving the vibration equation for the pile according to the compatibility condition between the pile and the soil. The proposed model is validated by comparing special cases of our model with the existing results. Numerical examples are presented to analyze the vibration characteristics of the pile.展开更多
We studied variations in the stress field around guide holes drilled during tunnel excavation to understand the mechanical mechanism by which these holes help prevent rockburst.The study used elasto-plastic analysis o...We studied variations in the stress field around guide holes drilled during tunnel excavation to understand the mechanical mechanism by which these holes help prevent rockburst.The study used elasto-plastic analysis of a circular chamber under non-axisymmetrical loads.The results showed that the unloading of in-situ stresses, and the forming of a secondary stress field, leads to a severe change in the stress field around the guide holes.This causes the formation of an X-shaped area of plastic deformation, which prevents the rockburst.Adopting a sub-model finite element technique, we analyzed the factors that influence the distribution of the plastic area, such as the guide hole distribution and the in-situ stress state.The calculations showed that higher initial stresses result in greater adjustment to the stress field.When the stress concentration is greater the size of the plastic area surrounding the guide hole is larger.A multi-row distribution of the guide holes shaped like a quincunx can increase the interconnectivity of the plastic areas and allow the plastic area to extend from the tunnel wall deep into the surrounding rock.An optimized design was put forward based on the distribution of the plastic area around guide holes and the factors that influence it.展开更多
The seismic behavior of the bedrock foundation during earthquakes concerns the stability and safety of nuclear power plants. Discontinuities like joints and faults existing in rock masses affect significantly the dyna...The seismic behavior of the bedrock foundation during earthquakes concerns the stability and safety of nuclear power plants. Discontinuities like joints and faults existing in rock masses affect significantly the dynamic behavior of bedrock. The dynamic FEM (finite element method) has been commonly utilized to analyze the seismic responses of bedrock, however, it cannot well represent the large deformation behavior of discontinuities. The DEM (distinct element method) has a better capability of simulating the sliding and separation of discontinuities existing in the bedrock, which influence the propagation of seismic waves. In this study, the dynamic FEM and DEM simulations were carried out to investigate the seismic behavior of the bedrock foundation under a nuclear power plant, and the differences between those two methods were illuminated. Numerical simulation results indicate that the FEM underestimates the attenuation effect of faults on the propagation of seismic waves. With the capability of simulating large deformation behavior of discontinuities, the DEM can be regarded as a better method for studying the seismic responses of bedrock foundation which contains discontinuities.展开更多
The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for t...The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for the stability of cutting slopes. Because the deformation of weak intercalated soils is significantly affected by water content due to the strong water sensitivity, it is necessary to study the influence of matric suction on the creep behaviors of weak intercalated soils. In order to find out the unsaturated creep characters of weak intercalated soils, a GDS unsaturated triaxial apparatus was used. Then the triaxial creep experiments on weak intercalated soil samples under varying matric suction were conducted to obtain the unsaturated creep curves. The results show that the weak intercalated soils have obvious creep behaviors, and the creep strain is in nonlinear relationship with stress and time. When the matric suction is constant, a larger deviator stress will lead to a larger creep strain; When the deviator stress is constant, a smaller matric suction will lead to a larger creep strain. Based on the Mesri creep model, an improved creep model for weak intercalated soils under varying matric suction was established, in which the relationship of stress-strain was expressed with a hyperbolic function, and the relationship of strain-time was expressed with power functions in stages. Then an unsaturated creep model including stress-matric suction-strain-time for weak intercalated soils was established based on the power function relationship between matric suction and Ed(a parameter of the improved creep model). The comparison of the calculated values of creep model and the experimental values shows that the creep behaviors of weak intercalated soils can be predicted by the unsaturated creep model by and large.展开更多
In the southeast part of the North-Asian craton, several ring basite-uhrabasite plutons have been rec- ognized, with which the commercial placers of platinoids associate. Analysis of the known geodynamic models of the...In the southeast part of the North-Asian craton, several ring basite-uhrabasite plutons have been rec- ognized, with which the commercial placers of platinoids associate. Analysis of the known geodynamic models of the region formation and materials of seismic tomography showed that the subduction processes, that actively manifested themselves in the Asia-Pacific convergence zone in Mesozoic, were responsible for initiation of the stagnated oceanic slab. Its NE and SW boundaries appear to coincide with the transform faults. Projection of the transform fault, bordering the above mentioned slab in the NEN, coincides with the Konder-Feklistovsky metal- logenic belt distinguished earlier and its Aldan (Inaglinsky) member. Higher platinum content of ring massifs of the belt is controlled by the influence of the lower mantle derivatives on the ascending upper mantle plumes.展开更多
The successful estimation of formation pressures (or formation pore gradient) is fundamental and the basis for many engineering works including drilling and oilfield development planning. Common log data are used fo...The successful estimation of formation pressures (or formation pore gradient) is fundamental and the basis for many engineering works including drilling and oilfield development planning. Common log data are used for formation pressure calculation. Modern techniques for pressure prediction have several disadvantages, notably, incorrect account of the downhole nonsteady thermal field and clay mineral composition. We propose a way to overcome listed shortcomings: a technique for thermal field proper account while formation pressure estimation and a petrophysical model, which reflects relationships between clay minerals composition and rock properties, derived from log data.展开更多
Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geot...Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geotechnical constitutive models used to predict the performance. The parameters of the constitutive models are related in turn to soil properties. So soil properties are a key point for Performance-Based Design. Questions arising are: (i) which are the more relevant soil properties to solve a specific PBD geotechnical problem? (ii) which are the more relevant model parameters and how they can be evaluated and/or correlated to soil properties? (iii) which is the role of the soil parameters uncertainty in Performance-Based Design? An answer to these questions is given in this paper, outlining the potential offered by the new advanced in-situ and laboratory tests and discussing the performance required by some geotechnical works.展开更多
One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and ...One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in frag- mentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (Kso) of Golgohar iron ore mine of Sirjan, lran. Comparing the results of ANFIS and RBF models shows that although the sta- tistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.展开更多
基金supported by funds from the National Natural Science Foundation of China (Nos. 51374013, 51174005 and 51134012)the Huo Yingdong Funds for Young Teachers to Conduct Researches on Basic Sciences (No. 121050)+1 种基金the academic research activities subsidies for academic and technical leaders and backup candidate in Anhui provincethe funds for the Doctoral Program of Higher Education (No. 20133415110006)
文摘Using the Splitting Hopkinson Pressure Bar (SHPB) experimental system, investigations were made into the dynamic mechanical performances of underground soft rocks. The experiments proved that the measured stress-strain curves display the characteristics of plastic deformation. By making use of a revised overstress constitutive formula for the stress model and by taking into account that the strain rate and strain are a function of I - E(t)/Eo, a revised overstress constitutive formula for the stress model was simplified by applying dimensional analysis and consequently, a simplified overstress formula was obtained for the stress model. Then, by taking into consideration the effects of damage under a dynamic load on the dynamic loading strength of the rock, the continuous damage theory and the statistical strength theory were introduced into the development of the simplified overstress constitutive formula for the stress model. Hence, a damage-based constitutive formula for an overstress model, which can be appropriately applied to the analysis of full dynamic stress-strain curves, was developed. By using the simplified damage-based constitutive formula for an overstress model, the actually measured curves are fitted, indicating that the fitting curves and those actually measured are in good agreement.
基金Projects(50809009,51578100) supported by the National Natural Science Foundation of ChinaProjects(3132014326,3132015095) supported by the Fundamental Research Funds for the Central Universities of China
文摘An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medium model established by Boer, while the pile is described by a beam vibration theory. By using separation theory of differential operator and variables to solve the dynamic governing equations for the soil, the fundamental solutions for the soil reactions on side and bottom of the pile are obtained. The dynamic impedance of the pile head is then derived by solving the vibration equation for the pile according to the compatibility condition between the pile and the soil. The proposed model is validated by comparing special cases of our model with the existing results. Numerical examples are presented to analyze the vibration characteristics of the pile.
基金Projects 50725931 supported by the National Science Fund for Distinguished Young Scholars50779050 and 50639100 by the National Natural Science Foundation of China
文摘We studied variations in the stress field around guide holes drilled during tunnel excavation to understand the mechanical mechanism by which these holes help prevent rockburst.The study used elasto-plastic analysis of a circular chamber under non-axisymmetrical loads.The results showed that the unloading of in-situ stresses, and the forming of a secondary stress field, leads to a severe change in the stress field around the guide holes.This causes the formation of an X-shaped area of plastic deformation, which prevents the rockburst.Adopting a sub-model finite element technique, we analyzed the factors that influence the distribution of the plastic area, such as the guide hole distribution and the in-situ stress state.The calculations showed that higher initial stresses result in greater adjustment to the stress field.When the stress concentration is greater the size of the plastic area surrounding the guide hole is larger.A multi-row distribution of the guide holes shaped like a quincunx can increase the interconnectivity of the plastic areas and allow the plastic area to extend from the tunnel wall deep into the surrounding rock.An optimized design was put forward based on the distribution of the plastic area around guide holes and the factors that influence it.
文摘The seismic behavior of the bedrock foundation during earthquakes concerns the stability and safety of nuclear power plants. Discontinuities like joints and faults existing in rock masses affect significantly the dynamic behavior of bedrock. The dynamic FEM (finite element method) has been commonly utilized to analyze the seismic responses of bedrock, however, it cannot well represent the large deformation behavior of discontinuities. The DEM (distinct element method) has a better capability of simulating the sliding and separation of discontinuities existing in the bedrock, which influence the propagation of seismic waves. In this study, the dynamic FEM and DEM simulations were carried out to investigate the seismic behavior of the bedrock foundation under a nuclear power plant, and the differences between those two methods were illuminated. Numerical simulation results indicate that the FEM underestimates the attenuation effect of faults on the propagation of seismic waves. With the capability of simulating large deformation behavior of discontinuities, the DEM can be regarded as a better method for studying the seismic responses of bedrock foundation which contains discontinuities.
基金supported by Natural Science Foundation of China (Grant No. 41502278)National Natural Science Foundation of China (Grant No. 41272377)+1 种基金China Postdoctoral Science Foundation funded project (2015M582588)Science & Technology Project of Hubei Traffic and Transport Office of China (2011)
文摘The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for the stability of cutting slopes. Because the deformation of weak intercalated soils is significantly affected by water content due to the strong water sensitivity, it is necessary to study the influence of matric suction on the creep behaviors of weak intercalated soils. In order to find out the unsaturated creep characters of weak intercalated soils, a GDS unsaturated triaxial apparatus was used. Then the triaxial creep experiments on weak intercalated soil samples under varying matric suction were conducted to obtain the unsaturated creep curves. The results show that the weak intercalated soils have obvious creep behaviors, and the creep strain is in nonlinear relationship with stress and time. When the matric suction is constant, a larger deviator stress will lead to a larger creep strain; When the deviator stress is constant, a smaller matric suction will lead to a larger creep strain. Based on the Mesri creep model, an improved creep model for weak intercalated soils under varying matric suction was established, in which the relationship of stress-strain was expressed with a hyperbolic function, and the relationship of strain-time was expressed with power functions in stages. Then an unsaturated creep model including stress-matric suction-strain-time for weak intercalated soils was established based on the power function relationship between matric suction and Ed(a parameter of the improved creep model). The comparison of the calculated values of creep model and the experimental values shows that the creep behaviors of weak intercalated soils can be predicted by the unsaturated creep model by and large.
文摘In the southeast part of the North-Asian craton, several ring basite-uhrabasite plutons have been rec- ognized, with which the commercial placers of platinoids associate. Analysis of the known geodynamic models of the region formation and materials of seismic tomography showed that the subduction processes, that actively manifested themselves in the Asia-Pacific convergence zone in Mesozoic, were responsible for initiation of the stagnated oceanic slab. Its NE and SW boundaries appear to coincide with the transform faults. Projection of the transform fault, bordering the above mentioned slab in the NEN, coincides with the Konder-Feklistovsky metal- logenic belt distinguished earlier and its Aldan (Inaglinsky) member. Higher platinum content of ring massifs of the belt is controlled by the influence of the lower mantle derivatives on the ascending upper mantle plumes.
文摘The successful estimation of formation pressures (or formation pore gradient) is fundamental and the basis for many engineering works including drilling and oilfield development planning. Common log data are used for formation pressure calculation. Modern techniques for pressure prediction have several disadvantages, notably, incorrect account of the downhole nonsteady thermal field and clay mineral composition. We propose a way to overcome listed shortcomings: a technique for thermal field proper account while formation pressure estimation and a petrophysical model, which reflects relationships between clay minerals composition and rock properties, derived from log data.
文摘Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geotechnical constitutive models used to predict the performance. The parameters of the constitutive models are related in turn to soil properties. So soil properties are a key point for Performance-Based Design. Questions arising are: (i) which are the more relevant soil properties to solve a specific PBD geotechnical problem? (ii) which are the more relevant model parameters and how they can be evaluated and/or correlated to soil properties? (iii) which is the role of the soil parameters uncertainty in Performance-Based Design? An answer to these questions is given in this paper, outlining the potential offered by the new advanced in-situ and laboratory tests and discussing the performance required by some geotechnical works.
基金supported by Islamic Azad University,Malayer Branch,the special fund (No.2293),for basicresearch project
文摘One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in frag- mentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (Kso) of Golgohar iron ore mine of Sirjan, lran. Comparing the results of ANFIS and RBF models shows that although the sta- tistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.