the Information-Centric Networking(ICN) paradigm is proved to have the advantages of decreasing data delivery latency, enhancing user mobility, etc. However, current implementations of ICN require changing the infrast...the Information-Centric Networking(ICN) paradigm is proved to have the advantages of decreasing data delivery latency, enhancing user mobility, etc. However, current implementations of ICN require changing the infrastructure of Internet, which hinders its deployment and development. Meanwhile, Software Defined Networking(SDN) emerges as a viable solution to facilitate the deployment of new network paradigm without disrupting production traffic by decoupling the control plane from data forwarding plane. In this paper, the essential properties which reflect ICN working principles are summarized, and a framework called SDICN is designed in accordance to the SDN philosophy. The algorithmic frameworks of SDICN which can satisfy the essential properties are designed based on the programmability and virtualization functions of SDN. Based on Open Flow and data center technology, a prototype of SDICN is implemented. By comparing the performance with the CCNx, the SDICN is proved to be feasibility and availability.展开更多
We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle dis-tortions. We generate the final spherical mapping by independently establishing two hemisphere parameteri...We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle dis-tortions. We generate the final spherical mapping by independently establishing two hemisphere parameterizations. The essence of the approach is to reduce spherical parameterization to a planar problem using symmetry analysis of 3D meshes. Experiments and comparisons were undertaken with various non-trivial 3D models, which revealed that our approach is efficient and robust. In particular, our method produces almost isometric parameterizations for the objects close to the sphere.展开更多
基金supported by the State Key Development Program for Basic Research of China under Grant No.2012CB315806National Natural Science Foundation of China(No.61379149,No.61402521 and No.61103225)+1 种基金Natural Science Foundation of Jiangsu(BK 20140070,BK20140068)Jiangsu Future Network Innovation Institute Research Project on Future Networks(BY2013095-1-06)
文摘the Information-Centric Networking(ICN) paradigm is proved to have the advantages of decreasing data delivery latency, enhancing user mobility, etc. However, current implementations of ICN require changing the infrastructure of Internet, which hinders its deployment and development. Meanwhile, Software Defined Networking(SDN) emerges as a viable solution to facilitate the deployment of new network paradigm without disrupting production traffic by decoupling the control plane from data forwarding plane. In this paper, the essential properties which reflect ICN working principles are summarized, and a framework called SDICN is designed in accordance to the SDN philosophy. The algorithmic frameworks of SDICN which can satisfy the essential properties are designed based on the programmability and virtualization functions of SDN. Based on Open Flow and data center technology, a prototype of SDICN is implemented. By comparing the performance with the CCNx, the SDICN is proved to be feasibility and availability.
基金Project supported by the National Natural Science Foundation of China (Nos. 60673006 and 60533060)the Program for New Century Excellent Talents in University (No. NCET-05-0275), Chinathe IDeA Network of Biomedical Research Excellence Grant (No. 5P20RR01647206) from National Institutes of Health (NIH), USA
文摘We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle dis-tortions. We generate the final spherical mapping by independently establishing two hemisphere parameterizations. The essence of the approach is to reduce spherical parameterization to a planar problem using symmetry analysis of 3D meshes. Experiments and comparisons were undertaken with various non-trivial 3D models, which revealed that our approach is efficient and robust. In particular, our method produces almost isometric parameterizations for the objects close to the sphere.