期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of an Anaerobic Digestion Unit for Biogas Production from Cow Dung Substrate
1
作者 Adesoji Matthew Olaniyan Musliu Olushola Sunmonu Kehinde Peter Alabi 《Journal of Agricultural Science and Technology(A)》 2014年第9期743-749,共7页
An anaerobic digestion unit for producing biogas from cow dung in the rural communities was designed, fabricated and tested for performance, durability and throughput. The major components of the digester included the... An anaerobic digestion unit for producing biogas from cow dung in the rural communities was designed, fabricated and tested for performance, durability and throughput. The major components of the digester included the substrate holding tank, tank cover, agitator, debris collector, inlet and outlet pipes, gas reception tank, hose and heat source. The digester is a vertical cylindrical tank with an inlet pipe for the introduction of substrate and an outlet pipe to collect the digested substrate. An agitator is incorporated inside the digester to break scum on the substrate and create uniform temperature profile in the digester while a pressure gauge was fitted to the gas outlet valve to measure the gas pressure in the tank. The agitator shaft is extended outside to be driven by an electric motor through belt and pulley system. The criteria considered in the design of the digester included air tightness of the system, mesophilic and thermophilic temperature, nature and type of substrate used, substrate retention period, number of crank turns per minute and volumetric capacity of the digestion tank. Other considerations included the desire to make the digestion tank and gas reception tank of galvanized steel to ensure good quality of the product and the need for a strong structural support to ensure structural stability of the system. After construction and assembly, the biogas digestion unit was tested with 40 kg of cow dung diluted with 80 kg of water and subjected to a retention period to make a substrate (slurry) of 10 % total solid (TS). Daily gas yield was determined; gas pressure in the tank was measured by the pressure gauge, while the ambient temperature was taken at five hours interval. Results showed that a cumulative gas yield of 0.415 litres after 22 d retention period at average substrate temperature and pH of 29 ℃ and 6.2, respectively. The digester has a substrate holding capacity of 330.8 litres and a production cost of $375 with all the construction materials being available locally. 展开更多
关键词 Anaerobic digestion BIOGAS COW dung.
下载PDF
磁性材料、超导材料和器件
2
《中国无线电电子学文摘》 2011年第2期12-19,共8页
关键词 薄膜技术 量子点 能量传递 表面形貌 激光损伤阈值 滤光片 太阳能模拟器 沉积 择优取向 基底温
原文传递
High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors 被引量:8
3
作者 Zhe Wang Peng Li +9 位作者 Rongguo Song Wei Qian Huang Zhou Qianlong Wang Yong Wang Xianci Zeng Lin Ren Shilin Yan Shichun Mu Daping He 《Science Bulletin》 SCIE EI CAS CSCD 2020年第16期1363-1370,M0004,共9页
Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic mater... Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF)with high conductivity((2.32±0.08)×105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only^4.7μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices. 展开更多
关键词 Strain sensor High conductivity Graphene assembled film FREESTANDING Ultra-low power consumption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部