针对传统的数据库管理系统无法很好地学习谓词之间的交互以及无法准确地估计复杂查询的基数问题,提出了一种树形结构的长短期记忆神经网络(Tree Long Short Term Memory, TreeLSTM)模型建模查询,并使用该模型对新的查询基数进行估计.所...针对传统的数据库管理系统无法很好地学习谓词之间的交互以及无法准确地估计复杂查询的基数问题,提出了一种树形结构的长短期记忆神经网络(Tree Long Short Term Memory, TreeLSTM)模型建模查询,并使用该模型对新的查询基数进行估计.所提出的模型考虑了查询语句中包含的合取和析取运算,根据谓词之间的操作符类型将子表达式构建为树形结构,根据组合子表达式向量来表示连续向量空间中的任意逻辑表达式.TreeLSTM模型通过捕捉查询谓词之间的顺序依赖关系从而提升基数估计的性能和准确度,将TreeLSTM与基于直方图方法、基于学习的MSCN和TreeRNN方法进行了比较.实验结果表明:TreeLSTM的估算误差比直方图、MSCN、TreeRNN方法的误差分别降低了60.41%,33.33%和11.57%,该方法显著提高了基数估计器的性能.展开更多
基数估计是查询优化的重要组成部分,其高效性、准确性直接影响查询优化效果。传统基数估计策略基于原表或原表样本进行统计信息收集,然后利用收集好的统计信息推导出基数。该策略在数据量大时,统计信息收集效率低;统计信息存在延迟,并...基数估计是查询优化的重要组成部分,其高效性、准确性直接影响查询优化效果。传统基数估计策略基于原表或原表样本进行统计信息收集,然后利用收集好的统计信息推导出基数。该策略在数据量大时,统计信息收集效率低;统计信息存在延迟,并且基数通过推导得到,准确度无法保证;一些策略通过子查询的反馈信息得到基数,但结果没有保存,基数获取效率低。为解决这些问题,提出了一种高效准确的基于查询结果的基数估计策略(cardinality estimation based on query result,CEQR),特点是统计信息来源为查询执行结果,不需要进行推导,保证基数的准确度,并且收集效率与原表数据量无关;建立一种基数表,保存基本表和中间结果在某种谓词下的统计信息,为后续查询提供服务,并建立基数维护规则,合理管理基数表;建立资源感知策略,将基数项映射到缓存,加快统计信息获取效率。给出了基于CEQR策略的适应性以及误差分析,并通过实验得出CEQR策略在效率上优于传统基数估计策略。展开更多
文摘针对传统的数据库管理系统无法很好地学习谓词之间的交互以及无法准确地估计复杂查询的基数问题,提出了一种树形结构的长短期记忆神经网络(Tree Long Short Term Memory, TreeLSTM)模型建模查询,并使用该模型对新的查询基数进行估计.所提出的模型考虑了查询语句中包含的合取和析取运算,根据谓词之间的操作符类型将子表达式构建为树形结构,根据组合子表达式向量来表示连续向量空间中的任意逻辑表达式.TreeLSTM模型通过捕捉查询谓词之间的顺序依赖关系从而提升基数估计的性能和准确度,将TreeLSTM与基于直方图方法、基于学习的MSCN和TreeRNN方法进行了比较.实验结果表明:TreeLSTM的估算误差比直方图、MSCN、TreeRNN方法的误差分别降低了60.41%,33.33%和11.57%,该方法显著提高了基数估计器的性能.
文摘基数估计是查询优化的重要组成部分,其高效性、准确性直接影响查询优化效果。传统基数估计策略基于原表或原表样本进行统计信息收集,然后利用收集好的统计信息推导出基数。该策略在数据量大时,统计信息收集效率低;统计信息存在延迟,并且基数通过推导得到,准确度无法保证;一些策略通过子查询的反馈信息得到基数,但结果没有保存,基数获取效率低。为解决这些问题,提出了一种高效准确的基于查询结果的基数估计策略(cardinality estimation based on query result,CEQR),特点是统计信息来源为查询执行结果,不需要进行推导,保证基数的准确度,并且收集效率与原表数据量无关;建立一种基数表,保存基本表和中间结果在某种谓词下的统计信息,为后续查询提供服务,并建立基数维护规则,合理管理基数表;建立资源感知策略,将基数项映射到缓存,加快统计信息获取效率。给出了基于CEQR策略的适应性以及误差分析,并通过实验得出CEQR策略在效率上优于传统基数估计策略。