期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自适应的基于点云的CAD模型重建方法 被引量:3
1
作者 刘进 《计算机应用》 CSCD 北大核心 2013年第9期2617-2622,共6页
基本的随机抽样一致性(RANSAC)算法无法根据点云模型的噪声自适应地设定分割参数,并有效判断点云数据是否被合理分割。针对该问题,提出了一种自适应的基于点云模型的计算机辅助设计(CAD)模型重建方法。该方法采用RANSAC算法从点云数据... 基本的随机抽样一致性(RANSAC)算法无法根据点云模型的噪声自适应地设定分割参数,并有效判断点云数据是否被合理分割。针对该问题,提出了一种自适应的基于点云模型的计算机辅助设计(CAD)模型重建方法。该方法采用RANSAC算法从点云数据中提取基本形状体素,使用直方图法分析点到相应形状体素表面的投影距离。对分割不合理的区域,按照该点云面片的高斯噪声设置新的分割参数,再次进行形状提取。经过一定轮数的迭代,该方法可以合理提取点云模型中的细小形状体素。然后通过校准形状体素的位置和方向、根据相邻形状体素之间的交线裁剪形状体素,实现CAD模型的重建。最后,以误差分布图和直方图分析了原始点云数据中点到CAD模型表面投影距离,有70.71%的点的投影距离不超过点云模型包围盒高度的1%。实验结果表明,以点云包围盒高度的1%为尺度向实验数据中加入噪声时,该方法仍能够通过自适应设置分割参数提取出合理的细小体素。 展开更多
关键词 点云 随机抽样一致性算法 高斯噪声 基本形状体素 CAD模型重建
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部