木材密度包括基本密度、气干密度等,在12%含水率条件下的气干密度(D12)较常用,因此有必要将木材气干密度换算为基本密度(Db)。目前利用木材气干密度计算基本密度的模型有Reyes、Chave、Simpson和Vieilledent模型等,然而这些模型预测结...木材密度包括基本密度、气干密度等,在12%含水率条件下的气干密度(D12)较常用,因此有必要将木材气干密度换算为基本密度(Db)。目前利用木材气干密度计算基本密度的模型有Reyes、Chave、Simpson和Vieilledent模型等,然而这些模型预测结果不完全一致。利用中国林业科学研究院木材工业研究所(Research Institute of Wood Industry,Chinese Academy of Forestry,CRIWI)和法国农业国际合作研究发展中心(French Agricultural Research Centre for International Development,CIRAD)的木材D12和Db数据,首先基于CRIWI的木材密度数据建立D12与Db的关系模型,然后将CRIWI和CIRAD的D12数据分别代入Reyes模型、Chave模型、Simpson模型、Vieilledent模型和新建模型,获得每个树种木材Db的预测值,并根据Db预测值和实测值计算残差绝对值均值。不同模型残差绝对值均值比较结果表明:Reyes模型在利用CRIWI和CIRAD的木材密度数据时预测Db的准确性都比较高,适用性最广;Simpson模型、新建模型在D12高于1.0 g/cm3时预测Db的准确性降低。展开更多
文摘木材密度包括基本密度、气干密度等,在12%含水率条件下的气干密度(D12)较常用,因此有必要将木材气干密度换算为基本密度(Db)。目前利用木材气干密度计算基本密度的模型有Reyes、Chave、Simpson和Vieilledent模型等,然而这些模型预测结果不完全一致。利用中国林业科学研究院木材工业研究所(Research Institute of Wood Industry,Chinese Academy of Forestry,CRIWI)和法国农业国际合作研究发展中心(French Agricultural Research Centre for International Development,CIRAD)的木材D12和Db数据,首先基于CRIWI的木材密度数据建立D12与Db的关系模型,然后将CRIWI和CIRAD的D12数据分别代入Reyes模型、Chave模型、Simpson模型、Vieilledent模型和新建模型,获得每个树种木材Db的预测值,并根据Db预测值和实测值计算残差绝对值均值。不同模型残差绝对值均值比较结果表明:Reyes模型在利用CRIWI和CIRAD的木材密度数据时预测Db的准确性都比较高,适用性最广;Simpson模型、新建模型在D12高于1.0 g/cm3时预测Db的准确性降低。