基于经验模式分解(empirical mode decomposition,简称EMD)分解出的基本模式分量往往会因为原始数据中的一些异常数据和高频噪声而丧失明确的物理意义。因此,提出了一种基于系统重构吸引子奇异值分解(singular value decomposition,简称...基于经验模式分解(empirical mode decomposition,简称EMD)分解出的基本模式分量往往会因为原始数据中的一些异常数据和高频噪声而丧失明确的物理意义。因此,提出了一种基于系统重构吸引子奇异值分解(singular value decomposition,简称SVD)降噪的EMD分解方法。在改进方法中,原始信号经SVD降噪后分解出了原信号中的有用成分和冗余成分,对有用成分进行EMD分解可以减少原信号中冗余成分对EMD分解能力的干扰,提高EMD分解能力,使得分解出的基本模式分量更加具有实际意义,更加有利于特征的提取。展开更多
文摘基于经验模式分解(empirical mode decomposition,简称EMD)分解出的基本模式分量往往会因为原始数据中的一些异常数据和高频噪声而丧失明确的物理意义。因此,提出了一种基于系统重构吸引子奇异值分解(singular value decomposition,简称SVD)降噪的EMD分解方法。在改进方法中,原始信号经SVD降噪后分解出了原信号中的有用成分和冗余成分,对有用成分进行EMD分解可以减少原信号中冗余成分对EMD分解能力的干扰,提高EMD分解能力,使得分解出的基本模式分量更加具有实际意义,更加有利于特征的提取。