期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
机器人避障问题
1
作者 吴元清 廖辉 +2 位作者 邓志扬 郭文静 凌德梅 《四川职业技术学院学报》 2013年第2期146-153,共8页
本文要解决机器人避障行走的最短路径和最短时间问题.主要研究了在一个区域中有12个不同形状的小区域是机器人不能与之发生碰撞的障碍物,机器人从区域中的O点出发避开各种障碍物到达最终目标点的最短路径和最短时间数学模型.我们对问题... 本文要解决机器人避障行走的最短路径和最短时间问题.主要研究了在一个区域中有12个不同形状的小区域是机器人不能与之发生碰撞的障碍物,机器人从区域中的O点出发避开各种障碍物到达最终目标点的最短路径和最短时间数学模型.我们对问题1采用初等数学中的解析几何和三角函数知识,建立基本线圆结构求路径的数学模型,分内公切线、外公切线和经过定点的动圆三种情形讨论,对动圆我们采用将圆形障碍物的半径增加r,或把切线转角用由定圆心到定点连线的夹角近似代替,都分解为基本线圆结构数学模型来求解,用穷举法结合matlab编程算出可能的走法的总路径的最小值.对问题2我们采用建立时间与行走转弯半径的数学模型,用搜索法结合matlab编程,求出最短时间.结果是:O→A的最短路径为471.0372.O→B的最短路径为858.6000.O→C的最短路径为1093.7000.O→A→B→C→O的最短路径为2783.7000.O→A的最短时间为94.5649. 展开更多
关键词 最短路径 搜索法 MATLAB 基本线圆结构 初等数学模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部