An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility ...In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.展开更多
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica...In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.展开更多
Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional anal...Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.展开更多
Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely red...Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.展开更多
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
基金The National Natural Science Foundation of China(No. 51008071)the Natural Science Foundation fo Jiangsu Province(No. BK2010413)Teaching & Research Excellence Grant for Young Faculty Members at Southeast University,the US National Science Foundation (No. CMS-0223971,CMS-0329416)
文摘In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.
基金The National Natural Science Foundation of China(No.51778183)the National Key Research and Development Program of China(No.2016YFC0701907)the Distinguished Young Scholar Foundation of Jiangsu Province(No.BK20160027)
文摘In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379028,51421064&51279025)
文摘Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)Natural Science Foundation of Jiangsu Province(Grant No.BK2012756)+1 种基金Scientific Research Project of Ministry of Education of China(Grant No.113029A)Program for Special Talents in Six Fields of Jiangsu Province(Grant No.2011JZ010)
文摘Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.