The objective of this work is to develop a novel methodology for determining real resistivity of conductive asphalt concrete based on two-electrode method.Due to an influence of contact resistance,the measured resisti...The objective of this work is to develop a novel methodology for determining real resistivity of conductive asphalt concrete based on two-electrode method.Due to an influence of contact resistance,the measured resistivity is always not equal to the real resistivity.To determine the real resistivity,a linear relationship of the measured resistivity,contact resistance and the real resistivity was established.Then experiments for six specimens with varying graphite contents were designed and performed to validate the formulation.Results of experiments demonstrate that the slope of the line represents contact resistance,and the intercept indicates the real resistivity.The effects of graphite content on contact resistance and real resistivity are also revealed.Finally,results show that the influence of contact resistance on accuracy of resisitvity measurement becomes more serious if graphite content is beyond 3%.Hence,it is the time to choose this novel methodology to determine the real resistivity of asphalt concrete by taking account of contact resistance.展开更多
There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water dept...There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water depths, and temperature on the performance of soil MFCs with anode being embedded in the flooded soil and cathode in the overlaying water. Results showed that the MFC with 5 cm deep soil and 3 cm overlaying water exhibited the highest open circuit voltage of 562 mV and a power density of 0.72 mW m-2. The ohmic resistance increased with more soil and water. The polarization resistance of cathode increased with more soil while that of anode increased with more water. During the 30 d operation, the cell voltage positively correlated with temperature and reached a maximum of 162 mV with a 500 ft external load. After the operation, the bacterial 16S rRNA gene from the soil and anode was sequenced. The bacteria in the soil were more diverse than those adhere to the anode where the bacteria were mainly affiliated to Eseherichia coli and Deltaproteobacteria. In summary, the two bacterial groups may generate electricity and the electrical properties were affected by temperature and the depth of soil and water.展开更多
基金Project(51178348)supported by the National Natural Science Foundation of China
文摘The objective of this work is to develop a novel methodology for determining real resistivity of conductive asphalt concrete based on two-electrode method.Due to an influence of contact resistance,the measured resistivity is always not equal to the real resistivity.To determine the real resistivity,a linear relationship of the measured resistivity,contact resistance and the real resistivity was established.Then experiments for six specimens with varying graphite contents were designed and performed to validate the formulation.Results of experiments demonstrate that the slope of the line represents contact resistance,and the intercept indicates the real resistivity.The effects of graphite content on contact resistance and real resistivity are also revealed.Finally,results show that the influence of contact resistance on accuracy of resisitvity measurement becomes more serious if graphite content is beyond 3%.Hence,it is the time to choose this novel methodology to determine the real resistivity of asphalt concrete by taking account of contact resistance.
基金Supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(No.KZCXZ-EW-402)the Hundred Talents Program of Chinese Academy of Sciences+1 种基金the International S&T Cooperation Program of China(No.2011DFB91710)the China Postdoctoral Science Foundation(Nos.2011M500410 and 2012T50142)
文摘There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water depths, and temperature on the performance of soil MFCs with anode being embedded in the flooded soil and cathode in the overlaying water. Results showed that the MFC with 5 cm deep soil and 3 cm overlaying water exhibited the highest open circuit voltage of 562 mV and a power density of 0.72 mW m-2. The ohmic resistance increased with more soil and water. The polarization resistance of cathode increased with more soil while that of anode increased with more water. During the 30 d operation, the cell voltage positively correlated with temperature and reached a maximum of 162 mV with a 500 ft external load. After the operation, the bacterial 16S rRNA gene from the soil and anode was sequenced. The bacteria in the soil were more diverse than those adhere to the anode where the bacteria were mainly affiliated to Eseherichia coli and Deltaproteobacteria. In summary, the two bacterial groups may generate electricity and the electrical properties were affected by temperature and the depth of soil and water.