Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the...Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.展开更多
Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, whi...Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.展开更多
Following the foundation failure of a building, with an aim of economical solution to strengthen other existing buildings of the same project, a new arrangement was implemented experimentally to test the adequacy of l...Following the foundation failure of a building, with an aim of economical solution to strengthen other existing buildings of the same project, a new arrangement was implemented experimentally to test the adequacy of load bearing capacity of a few selected cast-in-situ RCC (reinforced cement concrete) pile groups without demolishing the existing buildings. In this test, the column bottom of an existing building was removed by the help of scaffolding and after that a frame system consisting tension piles and hollow beam was constructed over the pile cap of the to be tested pile group. The load was tested by the help of hydraulic jack system and the constructed frame system. This paper contains the detailed plan, arrangement and method of the test with illustrations. The deflection and loading data analysis is also included which was performed to determine the outcome of the test. Through this test method the appropriate assessment of capacity of pile group of existing building could be done successfully and in result the structure could be saved by only super structure retrofitting.展开更多
Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotec...Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.展开更多
In order to realize information construction on settlement of pile-group foundation of Sutong Bridge, the monitoring instruments of high-precision micro-pressure sensor and hydrostatic leveling and settlement profiler...In order to realize information construction on settlement of pile-group foundation of Sutong Bridge, the monitoring instruments of high-precision micro-pressure sensor and hydrostatic leveling and settlement profiler were integrated synthetically. A set of practical multi-scale monitoring system on settlement of super-large pile-group foundation in deep water was put forward. The reliable settlement results are obtained by means of multi-sensor data fusion. Finite element model of pile-group foundation is established. By analysis of finite element simulated calculation of pile-group foundation, rules of settlement and uneven settlement obtained by monitoring and calculation results are coincident and the absolute error of settlement between them is 4.7 mm. The research shows that it is reasonable and feasible to monitor settlement of pile-group foundation with the system, and it can provide a method for the same type pile-group foundation in deep water.展开更多
基金Project(51178457) supported by the National Natural Science Foundation of ChinaProject(cstc2012jjys0001) supported by the Natural Science Foundation of Chongqing,ChinaProject(L2011231) supported by the Liaoning Education Department,China
文摘Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+1 种基金the Ministry of Science and Technology of China(No.SLDRCE 08-B-04)the Fundamental Research Funds for the Central Universities and Kwang-Hua Fund for College of Civil Engineering of Tongji University
文摘Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.
文摘Following the foundation failure of a building, with an aim of economical solution to strengthen other existing buildings of the same project, a new arrangement was implemented experimentally to test the adequacy of load bearing capacity of a few selected cast-in-situ RCC (reinforced cement concrete) pile groups without demolishing the existing buildings. In this test, the column bottom of an existing building was removed by the help of scaffolding and after that a frame system consisting tension piles and hollow beam was constructed over the pile cap of the to be tested pile group. The load was tested by the help of hydraulic jack system and the constructed frame system. This paper contains the detailed plan, arrangement and method of the test with illustrations. The deflection and loading data analysis is also included which was performed to determine the outcome of the test. Through this test method the appropriate assessment of capacity of pile group of existing building could be done successfully and in result the structure could be saved by only super structure retrofitting.
基金National Science and Technology Support Program(No.2006BAG04B05)
文摘Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.
基金Project(2002CB412707) supported by the National Basic Research Program of ChinaProject(2006BAG04B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan of ChinaProject(2010B14414) supported by the Scientific Research Program of Center University in China
文摘In order to realize information construction on settlement of pile-group foundation of Sutong Bridge, the monitoring instruments of high-precision micro-pressure sensor and hydrostatic leveling and settlement profiler were integrated synthetically. A set of practical multi-scale monitoring system on settlement of super-large pile-group foundation in deep water was put forward. The reliable settlement results are obtained by means of multi-sensor data fusion. Finite element model of pile-group foundation is established. By analysis of finite element simulated calculation of pile-group foundation, rules of settlement and uneven settlement obtained by monitoring and calculation results are coincident and the absolute error of settlement between them is 4.7 mm. The research shows that it is reasonable and feasible to monitor settlement of pile-group foundation with the system, and it can provide a method for the same type pile-group foundation in deep water.