Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in...Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.展开更多
The theory of limit cycles was applied to hydraulic hybrid vehicle (HHV) to analyze the dynamic characteristics of the system. The exact mathematical models based on configuration diagram of HHV were built to study on...The theory of limit cycles was applied to hydraulic hybrid vehicle (HHV) to analyze the dynamic characteristics of the system. The exact mathematical models based on configuration diagram of HHV were built to study on equilibrium points, nonexistence of limit cycle and stability of equilibrium points. The analysis showed that if the Young's modulus of fluid is neglected, the equilibrium points of the system will be distributed on both sides of the initial function. In addition, there is a unique equilibrium point according to the practical signification of the system parameters. The nonexistence analysis showed that there is no limit cycle for the system, no matter how the viscosity coefficient B changes. The stability analysis of equilibrium points showed that the system is asymptotically stable about the equilibrium point at B≥0 and the equilibrium point is the center point of the system at B=0. Finally, the phase diagrams of global topological structure of HHV system were entirely described according to qualitative analysis of the singular points at infinity.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2009434)the Innovation Platform for Public Health Emergency Preparedness and Response(NO.ZX201109)the Key Medical Talent Foundation of Jiangsu Province(RC2011084)
文摘Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.
基金supported by the National Natural Science Foundation of China (Grant No. 50475011)
文摘The theory of limit cycles was applied to hydraulic hybrid vehicle (HHV) to analyze the dynamic characteristics of the system. The exact mathematical models based on configuration diagram of HHV were built to study on equilibrium points, nonexistence of limit cycle and stability of equilibrium points. The analysis showed that if the Young's modulus of fluid is neglected, the equilibrium points of the system will be distributed on both sides of the initial function. In addition, there is a unique equilibrium point according to the practical signification of the system parameters. The nonexistence analysis showed that there is no limit cycle for the system, no matter how the viscosity coefficient B changes. The stability analysis of equilibrium points showed that the system is asymptotically stable about the equilibrium point at B≥0 and the equilibrium point is the center point of the system at B=0. Finally, the phase diagrams of global topological structure of HHV system were entirely described according to qualitative analysis of the singular points at infinity.