The distribution of repetitive DNAs along chromosomes is one of the crucial elements for understanding the organization and the evolution of plant genomes. Using a modified genomic in situ hybridization (GISH) proce...The distribution of repetitive DNAs along chromosomes is one of the crucial elements for understanding the organization and the evolution of plant genomes. Using a modified genomic in situ hybridization (GISH) procedure, fluorescence in situ hybridization (FISH) with genomic DNA to their own chromosomes (called self-genomic in situ hybridization, self-GISH) was carried out in six selected plant species with different genome size and amount of repetitive DNA. Nonuniform distribution of the fluorescent labeled probe DNA was observed on the chromosomes of all the species that were tested. The signal patterns varied among species and were related to the genome size. The chromosomes of the small Arabidopsis genome were labeled almost only in the pericentromeric regions and the nucleolus organizer regions (NORs). The signals in the relatively small genomes, rice, sorghum, and Brassica oleracea var. capitata L., were dispersed along the chromosome lengths, with a predominant distribution in the pericentromeric or proximal regions and some heterochromatic arms. All chromosomes of the large genomes, maize and barley, were densely labeled with strongly labeled regions and weakly labeled or unlabeled regions being arranged alternatively throughout the lengths. In addition, enhanced signal bands were shown in all pericentromeres and the NORs in B. oleracea var. capitata, and in all pericentromeric regions and certain intercalary sites in barley. The enhanced signal band pattern in barley was found consistent with the N-banding pattern of this species. The GISH with self-genomic DNA was compared with FISH with Cot-1 DNA in rice, and their signal patterns are found to be basically consistent. Our results showed that the self-GISH signals actually reflected the hybridization of genomic repetitive DNAs to the chromosomes, thus the self-GISH technique would be useful for revealing the distribution of the regions where repetitive DNAs concentrate along chromosomes and some chromatin differentiation associated with repetitive DNAs in plants.展开更多
Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments...Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments of proteomics at the levels of individual plants, tissues, organs and organells, as well as its applications in the area of plant genetic diversity, mutant characterization, and plant physiology, etc are reviewed. At last, the challenge and prospect of proteomics are discussed.展开更多
[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cott...[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cotton (G. hirsutum L. acc. TM-1), and were found to be distributed on subgenomes A10 and D10. And then bioinformatic analysis on these two genes were performed. [Result] The PHYB genes of upland cotton had the same motifs and domains with the PHYB genes in other plant species, and even the number and location of the motifs and domains of these PHYB genes were consistent. The PHYB amino acid sequence alignment and the phylogenetic tree constructed based on PHYB amino acid sequence of these plant species indicated that the two PHYB genes in upland cotton had higher homology and closer evolutionary relationships with cocoa (Theobroma cacao), but lower similarity to PHYB genes in monocotyledonous plants, such as rice (Oryza saitva) and corn (Zea mays). The comparison of PHYB gene structure also revealed that plant PHYB gene was more conserved during evolution. The autophosphorylation of dozens of phosphorylation sites in upland cotton PHYB gene may be essential for the functions of phytochromes and plays a significant role in regulating phytochrome-mediated signal transduction pathways. [Conclusion] The results of this paper will provide a theoretical basis for the cloning and functional research of PHYB genes.展开更多
Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plasti...Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.展开更多
microRNAs (miRNAs) are an abundant class of-22 nucleotide (nt) regulatory RNAs that are pervasive in higher eukaryotic genomes. In order to fully understand their prominence in genomes, it is necessary to elucidat...microRNAs (miRNAs) are an abundant class of-22 nucleotide (nt) regulatory RNAs that are pervasive in higher eukaryotic genomes. In order to fully understand their prominence in genomes, it is necessary to elucidate the molecular mechanisms that can diversify miRNA activities. In this review, we describe some of the many strategies that allow novel miRNA functions to emerge, with particular emphasis on how miRNA genes evolve in animals. These mechanisms include changes in their sequence, processing, or expression pattern; acquisition of miRNA^* functionality or antisense processing; and de novo gene birth. The facility and versatility of miRNAs to evolve and change likely underlies how they have become dominant constituents of higher genomes.展开更多
The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a par...The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.展开更多
DNA barcoding provides accurate stages. Single-gene-targeted metagenomic analysis identification of zooplankton species through all life based on DNA barcode databases can facilitate long- term monitoring of zooplankt...DNA barcoding provides accurate stages. Single-gene-targeted metagenomic analysis identification of zooplankton species through all life based on DNA barcode databases can facilitate long- term monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitocbondrial cytochrome oxidase subunit 1 (coxl) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity〉96%) or genus level (similarity〈96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.展开更多
The effect of Batroxobin on expression of c-Jun in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemistry methods. The results showed that...The effect of Batroxobin on expression of c-Jun in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemistry methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats, and at the same time c-Jun expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of c-Jun immune reactive cells of Batroxobin-treated rats was also less than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder in temporal ischemic rats, and the down-regulation of the expression of c-Jun is probably related to the neuroprotective mechanism.展开更多
Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should...Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and onmivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.展开更多
Due to lack of appreciation of the complexities of the interactions between nature and nurture, claims for the rapid improvements in medical care following the human genome project have been exaggerated. Although some...Due to lack of appreciation of the complexities of the interactions between nature and nurture, claims for the rapid improvements in medical care following the human genome project have been exaggerated. Although some progress has been made in certain fields, the full scope of genomic medicine may not be realised for many years.展开更多
OBJECTIVES: To detect the level of matrix metalloproteinase-2 (MMP-2) mRNA and the tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA in bladder transitional cell carcinoma (BTCC), and to estimate the prognosis for...OBJECTIVES: To detect the level of matrix metalloproteinase-2 (MMP-2) mRNA and the tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA in bladder transitional cell carcinoma (BTCC), and to estimate the prognosis for bladder tumor based on the quality and quantity of MMP-2 and TIMP-2 mRNA. METHODS: Thirty-five samples of human BTCC and 15 normal fresh bladder tissues were studied by RT-PCR analysis followed by computer-assisted image analysis. RESULTS: The level of the MMP-2 mRNA in BTCC was significantly increased compared with that in normal bladder epithelium. The positive rates of MMP-2 and TIMP-2 mRNA were 71.4% and 65.7% in BTCC, and 66.7% and 60.0% in the normal bladder wall. The expression intensity of the MMP-2 mRNA by image analysis tended to increase with tumor grading and staging, which showed statistical significance. Similarly, the MMP-2 to TIMP-2 ratio also showed statistically significant difference between normal bladder tissue and bladder carcinoma (P展开更多
Recent deep sequencing surveys of mammalian genomes have unexpectedly revealed pervasive and complex transcription and identified tens of thousands of RNA transcripts that do not code for proteins. These non-coding RN...Recent deep sequencing surveys of mammalian genomes have unexpectedly revealed pervasive and complex transcription and identified tens of thousands of RNA transcripts that do not code for proteins. These non-coding RNAs(nc RNAs) highlight the central role of RNA in gene regulation. nc RNAs are arbitrarily divided into two main groups: The first includes small RNAs, such as mi RNAs, pi RNAs, and endogenous si RNAs, that usually range from 20 to 30 nt, while the second group includes long non-coding RNAs(lnc RNAs), which are typically more than 200 nt in length. These nc RNAs were initially thought to merely regulate gene expression at the post-transcriptional level, but recent studies have indicated that nc RNAs, especially lnc RNAs, are extensively associated with diverse chromatin remodeling complexes and target them to specific genomic loci to alter DNA methylation or histone status. These findings suggest an emerging theme of nc RNAs in epigenetic regulation. In this review, we discuss the wide spectrum of nc RNAs in the regulation of DNA methylation and chromatin state, as well as the key questions that needs to be investigated and acknowledging the elegant design of these intriguing macromolecules.展开更多
All eukaryotic genomes have genes with introns in variable sizes.As far as spliceosomal introns are concerned,there are at least three basic parameters to stratify introns across diverse eukaryotic taxa:size,number,an...All eukaryotic genomes have genes with introns in variable sizes.As far as spliceosomal introns are concerned,there are at least three basic parameters to stratify introns across diverse eukaryotic taxa:size,number,and sequence context.The number parameter is highly variable in lower eukaryotes,especially among protozoan and fungal species,which ranges from less than4%to 78%of the genes.Over greater evolutionary time scales,the number parameter undoubtedly increases as observed in higher plants and higher vertebrates,reaching greater than 12.5 exons per gene in average among mammalian genomes.The size parameter is more complex,where multiple modes appear at work.Aside from intronless genes,there are three other types of intron-containing genes:half-sized,minimal,and size-expandable introns.The half-sized introns have only been found in a limited number of genomes among protozoan and fungal lineages and the other two types are prevalent in all animal and plant genomes.Among the size-expandable introns,the sizes of plant introns are expansion-limited in that the large introns exceeding 1000 bp are fewer in numbers and transposon-free as compared to the large introns among animals,where the larger introns are filled with transposable elements and appear expansion-flexible,reaching several kilobasepairs(kbp)and even thousands of kbp in size.Most of the intron parameters can be studied as signatures of the specific splicing machineries of different eukaryotic lineages and are highly relevant to the regulation of gene expression and functionality.In particular,the transcription-splicing-export coupling of eukaryotic intron dispensing leads to a working hypothesis that all intron parameters are evolved to be efficient and function-related in processing and routing the spliced transcripts.展开更多
CRISPR/Cas9 is a versatile genome-editing tool which is widely used for modifying the genome of both prokaryotic and eukaryotic organisms for basic research and applications. An increasing number of reports have demon...CRISPR/Cas9 is a versatile genome-editing tool which is widely used for modifying the genome of both prokaryotic and eukaryotic organisms for basic research and applications. An increasing number of reports have demonstrated that CRISPR/Cas9-mediated genome editing is a powerful technology for gene therapy. Here, we review the recent advances in CRISPR/Cas9-mediated gene therapy in animal models via different strategies and discuss the challenges as well as future prospects.展开更多
Transposable elements(TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to u...Transposable elements(TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection.展开更多
Advances in functional genomics have led to discovery of a large group of previous uncharacterized long non-coding RNAs (IncRNAs). Emerging evidence indicates that IncRNAs may serve as master gene regulators through...Advances in functional genomics have led to discovery of a large group of previous uncharacterized long non-coding RNAs (IncRNAs). Emerging evidence indicates that IncRNAs may serve as master gene regulators through various mechanisms. Dysregulation of IncRNAs is often associated with a variety of human diseases including cancer. Of significant interest, recent studies suggest that IncRNAs participate in the p53 tumor suppressor regulatory network. In this review, we discuss how IncRNAs serve as p53 regulators or p53 effectors. Further characterization of these p53-associated IncRNAs in cancer will provide a better understanding of lncRNA- mediated gene regulation in the p53 pathway. As a result, IncRNAs may prove to be valuable biomarkers for cancer diagnosis or poten- tial targets for cancer therapy.展开更多
Microbial synthesis of functional polymers has become increasingly important for industrial biotechnology. For the first time, it became possible to synthesize controllable composition of poly(3-hydroxyalkanoate) (...Microbial synthesis of functional polymers has become increasingly important for industrial biotechnology. For the first time, it became possible to synthesize controllable composition of poly(3-hydroxyalkanoate) (P3HA) consisting of 3-hydroxydodec- anoate (3HDD) and phenyl group on the side-chain when chromosome of Pseudomonas entomophila was edited to weaken its t-oxidation. Cultured in the presence of 5-phenylvaleric acid (PVA), the edited P. entomophila produced only homopolymer poly(3-hydroxy-5-phenylvalerate) or P(3HPhV). While copolyesters P(3HPhV-co-3HDD) of 3-hydroxy-5-phenylvalerate (3HPhV) and 3-hydroxydodecanoate (3HDD) were synthesized when the strain was grown on mixtures of PVA and dodecanoic acid (DDA). Compositions of 3HPhV in P(3HPhV-co-3HDD) were controllable ranging from 3% to 32% depending on DDDA/PVA ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated that the polymers were homopolymer of P(3HPhV) and random copolymers of 3HPhV and 3HDD. Their mechanical and thermal properties varied dramatically de- pending on the monomer ratios. Our results demonstrated the possibility to produce tailor-made, novel functional PHA using the chromosome edited P. entomophila.展开更多
Highly fecund marine species with dispersive life-history stages often display large population sizes and wide geographic distribution ranges. Consequently, they are expected to experience reduced genetic drift, effic...Highly fecund marine species with dispersive life-history stages often display large population sizes and wide geographic distribution ranges. Consequently, they are expected to experience reduced genetic drift, efficient selection fueled by frequent adaptive mutations, and high migration loads. This has important consequences for understanding how local adaptation proceeds in the sea. A key issue in this regard, relates to the genetic architecture underlying fitness traits. Theory predicts that adaptation may involve many genes but with a high variance in effect size. Therefore, the effect of selection on allele frequencies may be substantial for the largest effect size loci, but insignificant for small effect genes. In such a context, the performance of population genomic methods to unravel the genetic basis of adaptation depends on the fraction of adaptive genetic variance explained by the cumulative effect of outlier loci. Here, we address some methodological challenges associated with the detection of local adaptation using molecular approaches. We provide an overview of genome scan methods to detect selection, including those assuming complex demographic models that better describe spatial population structure. We then focus on quantitative genetics approaches that search for genotype-phenotype associations at different genomic scales, including genome-wide methods evaluating the cumulative effect of variants. We argue that the limited power of single locus tests can be alleviated by the use of polygenic scores to estimate the joint contribution of candidate variants to phenotypic variation.展开更多
Tetrahymena thermophila is a model eukaryotic organism. Functional genomic analyses in Tetrahymena present rich opportunities to address fundamental questions of cell and molecular biology. The Tetrahymena Gene Expres...Tetrahymena thermophila is a model eukaryotic organism. Functional genomic analyses in Tetrahymena present rich opportunities to address fundamental questions of cell and molecular biology. The Tetrahymena Gene Expression Database (TGED; available at http://tged.ihb.ac.cn) is the first expression database of a ciliated protozoan. It covers three major physiological and developmental states: growth, starvation, and conjugation, and can be accessed through a user-friendly web interface. The gene expression profiles and candidate co-expressed genes for each gene can be retrieved using Gene ID or Gene description searches. Descriptions of standardized methods of sample preparation and the opportunity to add new Tetrahymena microarray data will be of great interest to the Tetrahymena research community. TGED is intended to be a resource for all members of the scientific research community who are interested in Tetrahymena and other ciliates.展开更多
基金This work was supported by the National Natural Sciences Foundation of China (No. 39870423).
文摘The distribution of repetitive DNAs along chromosomes is one of the crucial elements for understanding the organization and the evolution of plant genomes. Using a modified genomic in situ hybridization (GISH) procedure, fluorescence in situ hybridization (FISH) with genomic DNA to their own chromosomes (called self-genomic in situ hybridization, self-GISH) was carried out in six selected plant species with different genome size and amount of repetitive DNA. Nonuniform distribution of the fluorescent labeled probe DNA was observed on the chromosomes of all the species that were tested. The signal patterns varied among species and were related to the genome size. The chromosomes of the small Arabidopsis genome were labeled almost only in the pericentromeric regions and the nucleolus organizer regions (NORs). The signals in the relatively small genomes, rice, sorghum, and Brassica oleracea var. capitata L., were dispersed along the chromosome lengths, with a predominant distribution in the pericentromeric or proximal regions and some heterochromatic arms. All chromosomes of the large genomes, maize and barley, were densely labeled with strongly labeled regions and weakly labeled or unlabeled regions being arranged alternatively throughout the lengths. In addition, enhanced signal bands were shown in all pericentromeres and the NORs in B. oleracea var. capitata, and in all pericentromeric regions and certain intercalary sites in barley. The enhanced signal band pattern in barley was found consistent with the N-banding pattern of this species. The GISH with self-genomic DNA was compared with FISH with Cot-1 DNA in rice, and their signal patterns are found to be basically consistent. Our results showed that the self-GISH signals actually reflected the hybridization of genomic repetitive DNAs to the chromosomes, thus the self-GISH technique would be useful for revealing the distribution of the regions where repetitive DNAs concentrate along chromosomes and some chromatin differentiation associated with repetitive DNAs in plants.
文摘Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments of proteomics at the levels of individual plants, tissues, organs and organells, as well as its applications in the area of plant genetic diversity, mutant characterization, and plant physiology, etc are reviewed. At last, the challenge and prospect of proteomics are discussed.
基金Supported by National Natural Science Foundation of China(31301682)the Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(14)5009]+1 种基金National Key Special Project for Breeding and Cultivation of GMO Varieties of China(2013ZX08005)the Jiangsu Province Science and Technology Support Program(BE2014389)~~
文摘[Objective] This study was conducted to clarify the biological information of PHYB genes in upland cotton (Gossypium hirsutum). [Method] Two PHYB genes were identified from the genome database of allotetraploid cotton (G. hirsutum L. acc. TM-1), and were found to be distributed on subgenomes A10 and D10. And then bioinformatic analysis on these two genes were performed. [Result] The PHYB genes of upland cotton had the same motifs and domains with the PHYB genes in other plant species, and even the number and location of the motifs and domains of these PHYB genes were consistent. The PHYB amino acid sequence alignment and the phylogenetic tree constructed based on PHYB amino acid sequence of these plant species indicated that the two PHYB genes in upland cotton had higher homology and closer evolutionary relationships with cocoa (Theobroma cacao), but lower similarity to PHYB genes in monocotyledonous plants, such as rice (Oryza saitva) and corn (Zea mays). The comparison of PHYB gene structure also revealed that plant PHYB gene was more conserved during evolution. The autophosphorylation of dozens of phosphorylation sites in upland cotton PHYB gene may be essential for the functions of phytochromes and plays a significant role in regulating phytochrome-mediated signal transduction pathways. [Conclusion] The results of this paper will provide a theoretical basis for the cloning and functional research of PHYB genes.
文摘Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.
文摘microRNAs (miRNAs) are an abundant class of-22 nucleotide (nt) regulatory RNAs that are pervasive in higher eukaryotic genomes. In order to fully understand their prominence in genomes, it is necessary to elucidate the molecular mechanisms that can diversify miRNA activities. In this review, we describe some of the many strategies that allow novel miRNA functions to emerge, with particular emphasis on how miRNA genes evolve in animals. These mechanisms include changes in their sequence, processing, or expression pattern; acquisition of miRNA^* functionality or antisense processing; and de novo gene birth. The facility and versatility of miRNAs to evolve and change likely underlies how they have become dominant constituents of higher genomes.
文摘The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.
基金Supported by the National Natural Science Foundation of China(No.41230963)the National Basic Research Program of China(973 Program)(No.2011CB403604)+2 种基金the"135"Fund of Institute of Oceanology,Chinese Academy of Sciences(No.2012I0060102)the Innovative Research Group Funding of the National Natural Science Foundation of China(No.41121064)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020305)
文摘DNA barcoding provides accurate stages. Single-gene-targeted metagenomic analysis identification of zooplankton species through all life based on DNA barcode databases can facilitate long- term monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitocbondrial cytochrome oxidase subunit 1 (coxl) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity〉96%) or genus level (similarity〈96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.
文摘The effect of Batroxobin on expression of c-Jun in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemistry methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats, and at the same time c-Jun expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of c-Jun immune reactive cells of Batroxobin-treated rats was also less than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder in temporal ischemic rats, and the down-regulation of the expression of c-Jun is probably related to the neuroprotective mechanism.
基金supported by the Key Project (30930015)General Project (31271329) from National Natural Science Foundation of China
文摘Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and onmivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.
文摘Due to lack of appreciation of the complexities of the interactions between nature and nurture, claims for the rapid improvements in medical care following the human genome project have been exaggerated. Although some progress has been made in certain fields, the full scope of genomic medicine may not be realised for many years.
文摘OBJECTIVES: To detect the level of matrix metalloproteinase-2 (MMP-2) mRNA and the tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA in bladder transitional cell carcinoma (BTCC), and to estimate the prognosis for bladder tumor based on the quality and quantity of MMP-2 and TIMP-2 mRNA. METHODS: Thirty-five samples of human BTCC and 15 normal fresh bladder tissues were studied by RT-PCR analysis followed by computer-assisted image analysis. RESULTS: The level of the MMP-2 mRNA in BTCC was significantly increased compared with that in normal bladder epithelium. The positive rates of MMP-2 and TIMP-2 mRNA were 71.4% and 65.7% in BTCC, and 66.7% and 60.0% in the normal bladder wall. The expression intensity of the MMP-2 mRNA by image analysis tended to increase with tumor grading and staging, which showed statistical significance. Similarly, the MMP-2 to TIMP-2 ratio also showed statistically significant difference between normal bladder tissue and bladder carcinoma (P
文摘Recent deep sequencing surveys of mammalian genomes have unexpectedly revealed pervasive and complex transcription and identified tens of thousands of RNA transcripts that do not code for proteins. These non-coding RNAs(nc RNAs) highlight the central role of RNA in gene regulation. nc RNAs are arbitrarily divided into two main groups: The first includes small RNAs, such as mi RNAs, pi RNAs, and endogenous si RNAs, that usually range from 20 to 30 nt, while the second group includes long non-coding RNAs(lnc RNAs), which are typically more than 200 nt in length. These nc RNAs were initially thought to merely regulate gene expression at the post-transcriptional level, but recent studies have indicated that nc RNAs, especially lnc RNAs, are extensively associated with diverse chromatin remodeling complexes and target them to specific genomic loci to alter DNA methylation or histone status. These findings suggest an emerging theme of nc RNAs in epigenetic regulation. In this review, we discuss the wide spectrum of nc RNAs in the regulation of DNA methylation and chromatin state, as well as the key questions that needs to be investigated and acknowledging the elegant design of these intriguing macromolecules.
基金supported by the National Natural Science Foundation of China(31101063,31271386)National Basic Research Program of China(2010CB126604,2011CB944100,2011CB944101)
文摘All eukaryotic genomes have genes with introns in variable sizes.As far as spliceosomal introns are concerned,there are at least three basic parameters to stratify introns across diverse eukaryotic taxa:size,number,and sequence context.The number parameter is highly variable in lower eukaryotes,especially among protozoan and fungal species,which ranges from less than4%to 78%of the genes.Over greater evolutionary time scales,the number parameter undoubtedly increases as observed in higher plants and higher vertebrates,reaching greater than 12.5 exons per gene in average among mammalian genomes.The size parameter is more complex,where multiple modes appear at work.Aside from intronless genes,there are three other types of intron-containing genes:half-sized,minimal,and size-expandable introns.The half-sized introns have only been found in a limited number of genomes among protozoan and fungal lineages and the other two types are prevalent in all animal and plant genomes.Among the size-expandable introns,the sizes of plant introns are expansion-limited in that the large introns exceeding 1000 bp are fewer in numbers and transposon-free as compared to the large introns among animals,where the larger introns are filled with transposable elements and appear expansion-flexible,reaching several kilobasepairs(kbp)and even thousands of kbp in size.Most of the intron parameters can be studied as signatures of the specific splicing machineries of different eukaryotic lineages and are highly relevant to the regulation of gene expression and functionality.In particular,the transcription-splicing-export coupling of eukaryotic intron dispensing leads to a working hypothesis that all intron parameters are evolved to be efficient and function-related in processing and routing the spliced transcripts.
基金supported by the National Natural Science Foundation of China (31371455, 31171318 to Dali Li, 81330049 to Mingyao Liu)the Science and Technology Commission of Shanghai Municipality (14140900300 to Dali Li)
文摘CRISPR/Cas9 is a versatile genome-editing tool which is widely used for modifying the genome of both prokaryotic and eukaryotic organisms for basic research and applications. An increasing number of reports have demonstrated that CRISPR/Cas9-mediated genome editing is a powerful technology for gene therapy. Here, we review the recent advances in CRISPR/Cas9-mediated gene therapy in animal models via different strategies and discuss the challenges as well as future prospects.
基金supported by the National Natural Science Foundation of China(3121010390131123007)+2 种基金the National Basic Research Program of China(2013CB835200)the State Key Laboratory of Plant Genomics(2015B0129-01)Liya Wei was supported by the China Postdoctoral Science Foundation(2015M570170)
文摘Transposable elements(TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection.
文摘Advances in functional genomics have led to discovery of a large group of previous uncharacterized long non-coding RNAs (IncRNAs). Emerging evidence indicates that IncRNAs may serve as master gene regulators through various mechanisms. Dysregulation of IncRNAs is often associated with a variety of human diseases including cancer. Of significant interest, recent studies suggest that IncRNAs participate in the p53 tumor suppressor regulatory network. In this review, we discuss how IncRNAs serve as p53 regulators or p53 effectors. Further characterization of these p53-associated IncRNAs in cancer will provide a better understanding of lncRNA- mediated gene regulation in the p53 pathway. As a result, IncRNAs may prove to be valuable biomarkers for cancer diagnosis or poten- tial targets for cancer therapy.
基金supported by the National High Technology Research and Development Program of China(2012AA023102 to Liu Lei,Guo Kai and Wu Qiong)the National Basic Research Program of China(2012CB725201 to Chen GuoQiang and Chen JinChun,2012CB725204 to Guo Kai and Wu Qiong)National Natural Science Foundation of China(31270146 to Chen GuoQiang)
文摘Microbial synthesis of functional polymers has become increasingly important for industrial biotechnology. For the first time, it became possible to synthesize controllable composition of poly(3-hydroxyalkanoate) (P3HA) consisting of 3-hydroxydodec- anoate (3HDD) and phenyl group on the side-chain when chromosome of Pseudomonas entomophila was edited to weaken its t-oxidation. Cultured in the presence of 5-phenylvaleric acid (PVA), the edited P. entomophila produced only homopolymer poly(3-hydroxy-5-phenylvalerate) or P(3HPhV). While copolyesters P(3HPhV-co-3HDD) of 3-hydroxy-5-phenylvalerate (3HPhV) and 3-hydroxydodecanoate (3HDD) were synthesized when the strain was grown on mixtures of PVA and dodecanoic acid (DDA). Compositions of 3HPhV in P(3HPhV-co-3HDD) were controllable ranging from 3% to 32% depending on DDDA/PVA ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated that the polymers were homopolymer of P(3HPhV) and random copolymers of 3HPhV and 3HDD. Their mechanical and thermal properties varied dramatically de- pending on the monomer ratios. Our results demonstrated the possibility to produce tailor-made, novel functional PHA using the chromosome edited P. entomophila.
文摘Highly fecund marine species with dispersive life-history stages often display large population sizes and wide geographic distribution ranges. Consequently, they are expected to experience reduced genetic drift, efficient selection fueled by frequent adaptive mutations, and high migration loads. This has important consequences for understanding how local adaptation proceeds in the sea. A key issue in this regard, relates to the genetic architecture underlying fitness traits. Theory predicts that adaptation may involve many genes but with a high variance in effect size. Therefore, the effect of selection on allele frequencies may be substantial for the largest effect size loci, but insignificant for small effect genes. In such a context, the performance of population genomic methods to unravel the genetic basis of adaptation depends on the fraction of adaptive genetic variance explained by the cumulative effect of outlier loci. Here, we address some methodological challenges associated with the detection of local adaptation using molecular approaches. We provide an overview of genome scan methods to detect selection, including those assuming complex demographic models that better describe spatial population structure. We then focus on quantitative genetics approaches that search for genotype-phenotype associations at different genomic scales, including genome-wide methods evaluating the cumulative effect of variants. We argue that the limited power of single locus tests can be alleviated by the use of polygenic scores to estimate the joint contribution of candidate variants to phenotypic variation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 30870356 and 30970424)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KSCX2-YW-G-072)the National Institutes of Health (Grant Nos. GM021793 and GM072752)
文摘Tetrahymena thermophila is a model eukaryotic organism. Functional genomic analyses in Tetrahymena present rich opportunities to address fundamental questions of cell and molecular biology. The Tetrahymena Gene Expression Database (TGED; available at http://tged.ihb.ac.cn) is the first expression database of a ciliated protozoan. It covers three major physiological and developmental states: growth, starvation, and conjugation, and can be accessed through a user-friendly web interface. The gene expression profiles and candidate co-expressed genes for each gene can be retrieved using Gene ID or Gene description searches. Descriptions of standardized methods of sample preparation and the opportunity to add new Tetrahymena microarray data will be of great interest to the Tetrahymena research community. TGED is intended to be a resource for all members of the scientific research community who are interested in Tetrahymena and other ciliates.