Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape al...Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.展开更多
The simplified analysis method based on the static equilibrium is generally adopted for raft design. The secondary stress of superstructure due to the differential settlement of the foundation is neglected, which lead...The simplified analysis method based on the static equilibrium is generally adopted for raft design. The secondary stress of superstructure due to the differential settlement of the foundation is neglected, which leads to larger support moments and longitudinal bending of raft compared with real values. The spring constitutive relation of composite foundation is obtained by the flat plate loading tests in Karst region. The interaction between the spring and the raft is equivalent to the interaction between the composite foundation and the raft. The model for superstructure-raft-composite foundation interaction analysis is thus established and the raft is designed. This method not only considers the nonlinear properties of composite foundation but also analyzes the influence of superstructure on bending moment and deformation of raft. Compared with the inverted floor method, the calculated values of moment become more reasonable and uneven settlements are considered. This can be references to the design of raft foundation in similar regions.展开更多
The finite element method was used for analysis of raft foundation design in high-rise building.Compared with other conventional methods,this method is more adapted to the practical condition since both superstructure...The finite element method was used for analysis of raft foundation design in high-rise building.Compared with other conventional methods,this method is more adapted to the practical condition since both superstructure stiffness and soil conditions were considered in calculation.The calculation results by example show that the base reaction is more uniform and the maximum reaction decreases obviously.Accordingly,the raft foundation design is more economic without any loss of security for high-rise building.展开更多
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.
基金Project(2011ZA05) supported by State Key Laboratory of Subtropical Building Science in South China University of Technology, China
文摘The simplified analysis method based on the static equilibrium is generally adopted for raft design. The secondary stress of superstructure due to the differential settlement of the foundation is neglected, which leads to larger support moments and longitudinal bending of raft compared with real values. The spring constitutive relation of composite foundation is obtained by the flat plate loading tests in Karst region. The interaction between the spring and the raft is equivalent to the interaction between the composite foundation and the raft. The model for superstructure-raft-composite foundation interaction analysis is thus established and the raft is designed. This method not only considers the nonlinear properties of composite foundation but also analyzes the influence of superstructure on bending moment and deformation of raft. Compared with the inverted floor method, the calculated values of moment become more reasonable and uneven settlements are considered. This can be references to the design of raft foundation in similar regions.
文摘The finite element method was used for analysis of raft foundation design in high-rise building.Compared with other conventional methods,this method is more adapted to the practical condition since both superstructure stiffness and soil conditions were considered in calculation.The calculation results by example show that the base reaction is more uniform and the maximum reaction decreases obviously.Accordingly,the raft foundation design is more economic without any loss of security for high-rise building.