Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint ...Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.展开更多
A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban...A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban areas. Tunnelling through weak and jointed rock masses such as the one in the Himalayas is a challenging task for the planners, designers, engineers and geologists because of high overburden, thickly vegetated surface, weak, poor and fragile rocks and highly varying geology with the presence of numerous small and big shear zones, faults, etc. Due to these reasons, various tunnelling problems have been faced in the past and are still being encountered. Failures and the problems may be regarded as challenges and opportunities for generating new knowledge base and thereby increasing self-reliance in tunnelling. The experiences of Himalayan tunnelling through weak and fragile rocks covering varying and mixed geology, understanding on tunnelling in squeezing ground conditions and applicability of TBM in Himalayas are presented. It has also been highlighted that the probe holes planning, drilling and monitoring shall be followed seriously to reduce the geological surprises.展开更多
The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and...The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.展开更多
Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evalu...Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.展开更多
Finite and infinite coupled element method was used to analyze the strength and deformation in layered soil foundation which was under the rectangular shallow footing subjected to vertical loads. In the numerical anal...Finite and infinite coupled element method was used to analyze the strength and deformation in layered soil foundation which was under the rectangular shallow footing subjected to vertical loads. In the numerical analysis, the footing was assumed to be elastic; the soil was assumed to be elastoplastic and the Drucker-Prager constitutive model was applied to describe its mechanic behavior. Corresponding program was employed to compute six kinds of layered soil foundations constituted by different soil layers. The conclusions which are useful in the theory and practice were made according to the analysis of the computation results.展开更多
There are a number of design procedures which have been developed to determine the appropriate thickness of trackbed layers on a railway track in order to reduce train induced stresses to an acceptable level thus ensu...There are a number of design procedures which have been developed to determine the appropriate thickness of trackbed layers on a railway track in order to reduce train induced stresses to an acceptable level thus ensuring that subgrade failure does not occur prematurely. This paper briefly describes four such procedures and compares the thickness of trackbed layers proposed by each for a number of hypothetical situations. To demonstrate further the suitability of each procedure, two existing sites in the UK are analysed and the trackbed layer thickness given by each procedure is then compared. The research shows that the procedures do not give consistent results. Subsequently it is suggested that it is important to consider other aspects in addition to the prescription of a suitable thickness of trackbed layers in any new build, renewal or remediation scheme.展开更多
Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its...Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its cost increases significantly when the building is located in earthquake area or in mining damage sector. The proposed structural system of the combined foundation makes possible to design and to construct a very stable and relative inexpensive foundation structure, which can obtain an extremely large horizontal surface and which can be placed not deeply beneath the terrain level. It can be a very solid support structure for a tall building placed on very weak subsoil and at the same time located in seismic area. This system can be applied not only for new buildings but it can be used for the existing buildings and moreover for straighten of the inclined objects. Due to special arrangement of component parts the combined foundation possesses inherent features of a vibration damper, what is highly desirable if buildings have to be located in earthquake areas. When the aboveground storeys structure has some similar patterns with structural form of the combined foundation then the structural system of the whole building obtains coherent structural characteristics and it is called the combined structural system of the tall building. Suitable application of this system makes possible to design high-rise buildings having interesting and unique architectonic forms, what is presented on a selected example.展开更多
Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundatio...Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.展开更多
This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedi...This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.展开更多
基金Project 50474064 supported by the National Natural Science Foundation of China
文摘Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.
文摘A considerable amount of tunnelling has been going on in India for various projects such as hydroelectric power, irrigation, roads and railways. Most of these projects are located in Himalayas, far away from the urban areas. Tunnelling through weak and jointed rock masses such as the one in the Himalayas is a challenging task for the planners, designers, engineers and geologists because of high overburden, thickly vegetated surface, weak, poor and fragile rocks and highly varying geology with the presence of numerous small and big shear zones, faults, etc. Due to these reasons, various tunnelling problems have been faced in the past and are still being encountered. Failures and the problems may be regarded as challenges and opportunities for generating new knowledge base and thereby increasing self-reliance in tunnelling. The experiences of Himalayan tunnelling through weak and fragile rocks covering varying and mixed geology, understanding on tunnelling in squeezing ground conditions and applicability of TBM in Himalayas are presented. It has also been highlighted that the probe holes planning, drilling and monitoring shall be followed seriously to reduce the geological surprises.
基金funded by the National Natural Science Foundation of China(Grant No.41001253)Chinese Postdoctoral Science Foundation(Grant No.2012M521717)National Science and Technology Major Project(Grant No.03-Y30B069001-13/15)
文摘The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.
基金National Science and Technology Support Program of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)
文摘Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.
基金Funded by Communication Construction Scientific Research Programme of the Western Region of China from the Communications Ministry of China (No.2002-318-000-26)
文摘Finite and infinite coupled element method was used to analyze the strength and deformation in layered soil foundation which was under the rectangular shallow footing subjected to vertical loads. In the numerical analysis, the footing was assumed to be elastic; the soil was assumed to be elastoplastic and the Drucker-Prager constitutive model was applied to describe its mechanic behavior. Corresponding program was employed to compute six kinds of layered soil foundations constituted by different soil layers. The conclusions which are useful in the theory and practice were made according to the analysis of the computation results.
文摘There are a number of design procedures which have been developed to determine the appropriate thickness of trackbed layers on a railway track in order to reduce train induced stresses to an acceptable level thus ensuring that subgrade failure does not occur prematurely. This paper briefly describes four such procedures and compares the thickness of trackbed layers proposed by each for a number of hypothetical situations. To demonstrate further the suitability of each procedure, two existing sites in the UK are analysed and the trackbed layer thickness given by each procedure is then compared. The research shows that the procedures do not give consistent results. Subsequently it is suggested that it is important to consider other aspects in addition to the prescription of a suitable thickness of trackbed layers in any new build, renewal or remediation scheme.
文摘Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its cost increases significantly when the building is located in earthquake area or in mining damage sector. The proposed structural system of the combined foundation makes possible to design and to construct a very stable and relative inexpensive foundation structure, which can obtain an extremely large horizontal surface and which can be placed not deeply beneath the terrain level. It can be a very solid support structure for a tall building placed on very weak subsoil and at the same time located in seismic area. This system can be applied not only for new buildings but it can be used for the existing buildings and moreover for straighten of the inclined objects. Due to special arrangement of component parts the combined foundation possesses inherent features of a vibration damper, what is highly desirable if buildings have to be located in earthquake areas. When the aboveground storeys structure has some similar patterns with structural form of the combined foundation then the structural system of the whole building obtains coherent structural characteristics and it is called the combined structural system of the tall building. Suitable application of this system makes possible to design high-rise buildings having interesting and unique architectonic forms, what is presented on a selected example.
文摘Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.
基金provided by the Special Funds for the Major State Basic Research Project(No.2006CB202200)the Innovative Team Development Project of the state Educational Ministry of China(No.IRT0656)
文摘This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.