Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic ...Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic classifying efficiency in this pa- per. In particular, the study has scrutinized the net- work traffic in terms of protocol types and signatures, flow length, and port distffoution, from which mean- ingful and interesting insights on the current Intemet of China from the perspective of both the packet and flow levels are derived. We show that the classifica- tion efficiency can be greatly irrproved by using the information of preferred ports of the network applica- tions. Quantitatively, we find two traffic duration thresholds, with which 40% of TCP flows and 70% of UDP flows can be excluded from classification pro- cessing while the in^act on classification accuracy is trivial, i.e., the classification accuracy can still reach a high level by saving 85% of the resources.展开更多
In order to investigate the surface deformation caused by coal mining and to reduce environmental damage, more accurate information of dynamic subsidence basins, caused by coal mining, is needed. Based on theological ...In order to investigate the surface deformation caused by coal mining and to reduce environmental damage, more accurate information of dynamic subsidence basins, caused by coal mining, is needed. Based on theological theory, we discuss surface deformation mechanism of dynamic subsidence on the assumption that both the roof and the coal seam are visco-elastic media, put forward the idea that the principle of surface deformation is similar to that of roofs, except for their parameters. Therefore, a surface deforma- tion equation can be obtained, given the equation of the roof deformation derived.from using a HIM rhe- ological model. In the end, we apply the equation of surface deformation as a practical subsidence prediction in a coal mine. Given the theologic properties of a rock mass, the results of our research of a dynamic subsidence basin can predict the development of surface deformation as a function of time, which is more important than the ultimate subsidence itself. The results indicate that using rheological theory to calculate the deformation of a dynamic subsidence basin is suitable and provides some reference for surface deformation of dynamic subsidence basins.展开更多
A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative ...A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative motions. Two-phase flow with complex deformations at the interface was simulated using a fractional step-volume of fluid algorithm. In addition, body motions were captured by an overlapping mesh system. Here, flow variables are transferred using a simple fully implicit non-conservative interpolation scheme which maintains the second-order accuracy of implemented spatial discretisation. Code was developed and an appropriate set of problems investigated. Results show good potential for development of a virtual hydrodynamics laboratory.展开更多
基金This paper was partially supported by the National Natural Science Foundation of China under Crant No. 61072061111 Project of China under Crant No. B08004 the Fundamental Research Funds for the Central Universities under Grant No. 2009RC0122. References
文摘Based on the massive data collected with a passive network monitoring equipment placed in China's backbone, we present a deep insight into the network backbone traffic and evaluate various ways for inproving traffic classifying efficiency in this pa- per. In particular, the study has scrutinized the net- work traffic in terms of protocol types and signatures, flow length, and port distffoution, from which mean- ingful and interesting insights on the current Intemet of China from the perspective of both the packet and flow levels are derived. We show that the classifica- tion efficiency can be greatly irrproved by using the information of preferred ports of the network applica- tions. Quantitatively, we find two traffic duration thresholds, with which 40% of TCP flows and 70% of UDP flows can be excluded from classification pro- cessing while the in^act on classification accuracy is trivial, i.e., the classification accuracy can still reach a high level by saving 85% of the resources.
基金Financial support for this research, provided by the National Natural Science Foundation of China (Nos.50804020 and 50974070)the Doctor Initial Fund of Liaoning Provincial Science and Technology Department (No.20081103)the Key Laboratory Fund of Liaoning Province (No. LS2010074)
文摘In order to investigate the surface deformation caused by coal mining and to reduce environmental damage, more accurate information of dynamic subsidence basins, caused by coal mining, is needed. Based on theological theory, we discuss surface deformation mechanism of dynamic subsidence on the assumption that both the roof and the coal seam are visco-elastic media, put forward the idea that the principle of surface deformation is similar to that of roofs, except for their parameters. Therefore, a surface deforma- tion equation can be obtained, given the equation of the roof deformation derived.from using a HIM rhe- ological model. In the end, we apply the equation of surface deformation as a practical subsidence prediction in a coal mine. Given the theologic properties of a rock mass, the results of our research of a dynamic subsidence basin can predict the development of surface deformation as a function of time, which is more important than the ultimate subsidence itself. The results indicate that using rheological theory to calculate the deformation of a dynamic subsidence basin is suitable and provides some reference for surface deformation of dynamic subsidence basins.
文摘A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative motions. Two-phase flow with complex deformations at the interface was simulated using a fractional step-volume of fluid algorithm. In addition, body motions were captured by an overlapping mesh system. Here, flow variables are transferred using a simple fully implicit non-conservative interpolation scheme which maintains the second-order accuracy of implemented spatial discretisation. Code was developed and an appropriate set of problems investigated. Results show good potential for development of a virtual hydrodynamics laboratory.