期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于差异性度量的基础聚类三支过滤算法 被引量:3
1
作者 梁伟 段晓东 徐健锋 《计算机科学》 CSCD 北大核心 2021年第1期136-144,共9页
基础聚类成员预处理是聚类集成算法中的一个重要研究步骤。众多研究表明,基础聚类成员集合的差异性会影响聚类集成算法性能。当前聚类集成研究围绕着生成基础聚类和优化集成策略展开,而针对基础聚类成员的差异性度量及其优化的研究尚不... 基础聚类成员预处理是聚类集成算法中的一个重要研究步骤。众多研究表明,基础聚类成员集合的差异性会影响聚类集成算法性能。当前聚类集成研究围绕着生成基础聚类和优化集成策略展开,而针对基础聚类成员的差异性度量及其优化的研究尚不完善。文中基于Jaccard相似性提出一种基础聚类成员差异性度量指标,并结合三支决策思想提出了基础聚类成员差异性三支过滤方法。该方法首先设定基础聚类成员的三支决策的初始阈值α(0)和β(0),然后计算各个基础聚类成员的差异性度量指标,进而实施三支决策。其决策策略为:当基础聚类成员的差异性度量指标小于指定阈值α(0)时,删除该基础聚类成员;当基础聚类成员的差异性度量指标大于指定阈值β(0)时,保留该基础聚类成员;当基础聚类成员的差异性度量指标大于α(0)且小于β(0)时,该基础聚类成员被归入三支决策边界域等待进一步判断。当结束一轮三支决策后,算法将重新计算三支决策阈值α(1)和β(1)并对上轮三支决策边界域重新进行三支决策,直至没有基础聚类成员被归入三支决策边界域或达到指定迭代次数。对比实验表明基础差异性度量的基础聚类三支过滤方法能够有效地提升聚类集成效果。 展开更多
关键词 基础聚类过滤 三支决策 三支优化 集成 差异性度量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部