The ionization energies (IEs) of cyclopropenylidene (c-C3H2), propargylene (HCCCH) and propadienylidene (H2CCC) have been computed using the CCSD(T)/CBS method, which involves the approxixnation to the compl...The ionization energies (IEs) of cyclopropenylidene (c-C3H2), propargylene (HCCCH) and propadienylidene (H2CCC) have been computed using the CCSD(T)/CBS method, which involves the approxixnation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasi-perturbative triple excitation effect (CCSD(T)). The zero-point vibrational energy correction, the core-valence electronic correction, the scalar relativistic effect and the high level correction beyond the CCSD(T) excitations have also been made in these calculations. The CCSD(T)/CBS values for the IN(c-C3H2) and IE(HCCCH) of 9.164, 8.987 eV are in good agreement with the experimental values of (9.15±0.03) and (8.96±0.04) eV. The CCSD(T)/CBS calculations yield the IE values of 10.477 and 10.388 eV for the ionization transitions H2CCC→H2CCC^+ (^2A1, C2v) and H2CCC→H2CCC+ (^2A', Cs), respectively. On the basis of the Franek-Condon factor consideration, the IE of (10.43±0.02) eV determined in the previous single-photon ionization experiment most likely corresponds to the ionization threshold for the H2CCC→H2CCC^+(^2A1, C2v) transition. Although the precision of the experimental IN measurements fpr c-C3H2, HCCCH, and H2CCC is insufficient to pin down the accuracy of the theoretical calculations to better than ±30 meV, the excellent agreement between the experimental and theoretical IE values observed in the present study indicates that the CCSD(T)/CBS calculations together with high-order correlation corrections are capable of yielding reliable IE predictions for simple hydrocarbon carbenes and bi-radicals. We have also reported the heats of formation at 0 K (△H^of0) and 298 K (△H^of298)for c-C3H2/c-C3H2^+, HCCCH/HCCCH^+, and H2CCC/H2CCC^+, The available experimental △H^of0 and △H^of298 values for c-C3H2/c C3H2^+, HCCCH/HCCCH^+ are found to be in good accord with the CCSD(T)/CBS predictions after taking into account the experimental uncertainties.展开更多
Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthal...Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthalpies of wide range organic pollutants only from their structural functional groups. Using such an extended dataset cornprising 1694 organic chemicals from 77 diverse material classes benefits the generalizability and reliability of the study. The new suggested collection of 12 functional groups and a simple linear regression lead to promising statis- tics of R2= 0.958, Q2 =0.956, and AEE= 57 kJ.mo1-1 for the whole dataset. Moreover, unknown experimental formation enthalpies for 27 organic pollutants are estimated by the presented approach. The resultant model needs no technical software/calculations, and thus can be easily applied by a non-specialist user.展开更多
The increasing stocks of public infrastructure and serious deterioration of infrastructure systems due to corrosion present great financial, safety, technical and operational challenges to government organizations in ...The increasing stocks of public infrastructure and serious deterioration of infrastructure systems due to corrosion present great financial, safety, technical and operational challenges to government organizations in charge of public infrastructure development and management. To meet those challenges, a performance-based life-cycle management model for reinforced concrete structures was proposed in this paper. This model predicts the life-cycle performance of infrastructure based on the corrosion-induced deterioration mechanism: condition index as well as performance limit states. A case study is provided to demonstrate the use of the proposed performance-based life-cycle cost management model.展开更多
文摘The ionization energies (IEs) of cyclopropenylidene (c-C3H2), propargylene (HCCCH) and propadienylidene (H2CCC) have been computed using the CCSD(T)/CBS method, which involves the approxixnation to the complete basis set (CBS) limit at the coupled cluster level with single and double excitations plus quasi-perturbative triple excitation effect (CCSD(T)). The zero-point vibrational energy correction, the core-valence electronic correction, the scalar relativistic effect and the high level correction beyond the CCSD(T) excitations have also been made in these calculations. The CCSD(T)/CBS values for the IN(c-C3H2) and IE(HCCCH) of 9.164, 8.987 eV are in good agreement with the experimental values of (9.15±0.03) and (8.96±0.04) eV. The CCSD(T)/CBS calculations yield the IE values of 10.477 and 10.388 eV for the ionization transitions H2CCC→H2CCC^+ (^2A1, C2v) and H2CCC→H2CCC+ (^2A', Cs), respectively. On the basis of the Franek-Condon factor consideration, the IE of (10.43±0.02) eV determined in the previous single-photon ionization experiment most likely corresponds to the ionization threshold for the H2CCC→H2CCC^+(^2A1, C2v) transition. Although the precision of the experimental IN measurements fpr c-C3H2, HCCCH, and H2CCC is insufficient to pin down the accuracy of the theoretical calculations to better than ±30 meV, the excellent agreement between the experimental and theoretical IE values observed in the present study indicates that the CCSD(T)/CBS calculations together with high-order correlation corrections are capable of yielding reliable IE predictions for simple hydrocarbon carbenes and bi-radicals. We have also reported the heats of formation at 0 K (△H^of0) and 298 K (△H^of298)for c-C3H2/c-C3H2^+, HCCCH/HCCCH^+, and H2CCC/H2CCC^+, The available experimental △H^of0 and △H^of298 values for c-C3H2/c C3H2^+, HCCCH/HCCCH^+ are found to be in good accord with the CCSD(T)/CBS predictions after taking into account the experimental uncertainties.
基金Supported by the "Tehran Naftoon Arya Eng. Co." research committee of Iran
文摘Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthalpies of wide range organic pollutants only from their structural functional groups. Using such an extended dataset cornprising 1694 organic chemicals from 77 diverse material classes benefits the generalizability and reliability of the study. The new suggested collection of 12 functional groups and a simple linear regression lead to promising statis- tics of R2= 0.958, Q2 =0.956, and AEE= 57 kJ.mo1-1 for the whole dataset. Moreover, unknown experimental formation enthalpies for 27 organic pollutants are estimated by the presented approach. The resultant model needs no technical software/calculations, and thus can be easily applied by a non-specialist user.
文摘The increasing stocks of public infrastructure and serious deterioration of infrastructure systems due to corrosion present great financial, safety, technical and operational challenges to government organizations in charge of public infrastructure development and management. To meet those challenges, a performance-based life-cycle management model for reinforced concrete structures was proposed in this paper. This model predicts the life-cycle performance of infrastructure based on the corrosion-induced deterioration mechanism: condition index as well as performance limit states. A case study is provided to demonstrate the use of the proposed performance-based life-cycle cost management model.