To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s...To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.展开更多
Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium ...Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.展开更多
The adsorption of phenol, p-nitrophenol and 2,4-dinitrophenol in aqueous phase on activated carbon is performed by evaluating factors such as the pH of the solution, it is found that the value in adsorbate molecule is...The adsorption of phenol, p-nitrophenol and 2,4-dinitrophenol in aqueous phase on activated carbon is performed by evaluating factors such as the pH of the solution, it is found that the value in adsorbate molecule is upper and lower of its respective pKa. Likewise, the heterogeneity of the adsorbent solid is evaluated using commercial activated carbon, which is modified by means of oxidation with HNO3 and reduction with H2 fluxing at high temperature, treatments represent variatians in textural properties of solid which changed equally the superficial chemistry of the same. The major concentration of retained plLenol compound in some samples of carbon is produced in pH values which the solute is basically molecular.展开更多
In this paper, the rigid structural thermosensitive polymer (made in lab) of NBS (N-butyl styrene), N, N-DEAM (diethyl acrylamide) and AM (acrylamide) was prepared. The influence of viscosity for copolymer sol...In this paper, the rigid structural thermosensitive polymer (made in lab) of NBS (N-butyl styrene), N, N-DEAM (diethyl acrylamide) and AM (acrylamide) was prepared. The influence of viscosity for copolymer solution under different reaction conditions such as temperatures and inorganic salt (monovalent salt and divalent salt) was analyzed. The experiment studies the combination of polymer situation and three different types of surfactants under certain conditions of the room temperature (25℃) and the formation temperature (76℃). At last, the influence of the surfactant kinds and concentration on the viscosity of the polymer solution are studied. The results show that: The copolymer solution, the apparent viscosity of which decreases with the increasement of temperature, but its viscosity has suddenly increased and thereafter dropped in the transition temperature. So the temperature sensitive effect ofcopolymer is very significantly. When the concentration of inorganic salt and surfactant can be controlled in certain extent, the copolymer solution, the effect increases with the increasement of the concentration, but the viscosity of which decreases with the increasement of shear rate. Shear rate can be controlled in certain extent, shearing stability properties of the copolymer solution are proved.展开更多
The density,viscosity and refractive index of aqueous solutions of tetrabutylammonium hydroxide(TBAOH),piperazine(PZ) and their aqueous blends are determined at several temperatures(303.15 to 333.15 K).All these measu...The density,viscosity and refractive index of aqueous solutions of tetrabutylammonium hydroxide(TBAOH),piperazine(PZ) and their aqueous blends are determined at several temperatures(303.15 to 333.15 K).All these measured physicochemical properties decreases with an increase in temperature.The density data is used to calculate the coefficient of thermal expansion and excess molar volume of all aqueous binary and ternary solutions.The coefficient of thermal expansion increases with increase in temperatures and concentrations.The negativity of excess molar volume for all the aqueous solution decreased with increase in temperature.Each physical property is correlated with temperature by least square method and the corresponding coefficients for each property are presented.The prediction values from correlations for the physical properties are in good agreement with the experimental values.展开更多
Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and su...Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.展开更多
基金financial support from the National Natural Science Foundation of China(No.52074364)。
文摘To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.
文摘The adsorption of phenol, p-nitrophenol and 2,4-dinitrophenol in aqueous phase on activated carbon is performed by evaluating factors such as the pH of the solution, it is found that the value in adsorbate molecule is upper and lower of its respective pKa. Likewise, the heterogeneity of the adsorbent solid is evaluated using commercial activated carbon, which is modified by means of oxidation with HNO3 and reduction with H2 fluxing at high temperature, treatments represent variatians in textural properties of solid which changed equally the superficial chemistry of the same. The major concentration of retained plLenol compound in some samples of carbon is produced in pH values which the solute is basically molecular.
文摘In this paper, the rigid structural thermosensitive polymer (made in lab) of NBS (N-butyl styrene), N, N-DEAM (diethyl acrylamide) and AM (acrylamide) was prepared. The influence of viscosity for copolymer solution under different reaction conditions such as temperatures and inorganic salt (monovalent salt and divalent salt) was analyzed. The experiment studies the combination of polymer situation and three different types of surfactants under certain conditions of the room temperature (25℃) and the formation temperature (76℃). At last, the influence of the surfactant kinds and concentration on the viscosity of the polymer solution are studied. The results show that: The copolymer solution, the apparent viscosity of which decreases with the increasement of temperature, but its viscosity has suddenly increased and thereafter dropped in the transition temperature. So the temperature sensitive effect ofcopolymer is very significantly. When the concentration of inorganic salt and surfactant can be controlled in certain extent, the copolymer solution, the effect increases with the increasement of the concentration, but the viscosity of which decreases with the increasement of shear rate. Shear rate can be controlled in certain extent, shearing stability properties of the copolymer solution are proved.
基金the CO2 Management (MOR) research group of Universiti TeknologiPETRONAS for providing the financial support and facilities
文摘The density,viscosity and refractive index of aqueous solutions of tetrabutylammonium hydroxide(TBAOH),piperazine(PZ) and their aqueous blends are determined at several temperatures(303.15 to 333.15 K).All these measured physicochemical properties decreases with an increase in temperature.The density data is used to calculate the coefficient of thermal expansion and excess molar volume of all aqueous binary and ternary solutions.The coefficient of thermal expansion increases with increase in temperatures and concentrations.The negativity of excess molar volume for all the aqueous solution decreased with increase in temperature.Each physical property is correlated with temperature by least square method and the corresponding coefficients for each property are presented.The prediction values from correlations for the physical properties are in good agreement with the experimental values.
基金Project(2008ZX07105-002) supported by the Erhai Lake Project of National Science and Technology Major Project in the 11th Five years Plan of China
文摘Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.