BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
[Objective] The experiment aimed to set up a method for isolating and culturing endometrial stromal cells (BESC) and endometrial glandular epithelial cells(BEGEC) of buffalo as well as laid foundation for studying bio...[Objective] The experiment aimed to set up a method for isolating and culturing endometrial stromal cells (BESC) and endometrial glandular epithelial cells(BEGEC) of buffalo as well as laid foundation for studying biological mechanism of embryo implantation and uterine diseases. [Method] The enzymatic digestion method, scraping method, serial filtration and differential velocity adherent technique were used to isolate BESC and BEGEC, then immunocytochemical method and TRYPAN-Blue assay were used to determine the purity and survival rate of isolated cells. [Result] The BESC and BEGEC were successfully isolated and cultured while immunocytochemical method and cell count method demonstrated that the purity was over 90%. The result of TRYPAN-Blue assay shown that survival rate of BESC and BEGEC was 91% and 78% respectively. [Conclusion] The enzymatic digestion method, scraping method, serial filtration and differential velocity adherent technique could isolate BESC and BEGEC with high purity.展开更多
Metallothionein gene (MT) has been transferred into mushroom protoplasts by electroporation. It is a low molecular weight, cysteine-rich and metal-binding protein. MT can bind metals. Its synthesis is induced by Zn io...Metallothionein gene (MT) has been transferred into mushroom protoplasts by electroporation. It is a low molecular weight, cysteine-rich and metal-binding protein. MT can bind metals. Its synthesis is induced by Zn ion. Thus the expression of MT gene in mushroom can improve the accumulation of Zn in this fungus. This transgenic mushroom, consumed as a kind of vegetable, can supply the necessary Zn to people who are short of the element. When protoplasts were prepared, the concentration (C) of protoplasts is 6.745 x 10(6) /mL. After protoplast electroporation, the transformation rate of protoplasts is 0.01 %. Polymerase chain reaction (PCR) analysis showed that the gene had been integrated into the mushroom chromosome, SDS-PAGE, Western blot analysis indicated that the MT gene had been expressed in the transgenic mushroom. The expressing level, detected by ELISA, is 0.6 % - 0.8 %. Tested for metal resistance, the wild-type mushroom growth was inhibited on die medium containing 1.0 - 1.2 mmoL/L ZnSO4. While the transgenic mushroom was inhibited on the medium containing 1. 5 - 2.0 mmol/L ZnSO4. The mycelium can develop into hymenophore in the medium of rice bran: sawdust = 1: 3, and not in the medium of rice bran: sawdust = 1: 4.展开更多
Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plasti...Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.展开更多
[Objective] This study aimed to investigate the optimal component of culti- vation medium for container seedling raising of Camellia oleifera. [Method] In the application of container nursery technology of Camellia ol...[Objective] This study aimed to investigate the optimal component of culti- vation medium for container seedling raising of Camellia oleifera. [Method] In the application of container nursery technology of Camellia oleifera grafting in emergent stocks, yellow clay soil, surface soil of pine forest, decomposed edible fungus, peat soil, dung and dirt were mixed by different proportions into five formulae as nursery substrates, with garden soil as the control, in order to investigate the influences of various substrates on the growth of annual Camellia oleifera container seedlings by using randomized block design based on variance analysis and multiple comparisons, and to screen the optimal substrate formula for container nursery of Camellia oleifera. [Result] The influences of different substrates on the transplanting survival rate, seedling height, basal diameter, height-diameter ratio and lateral root length of Camellia oleifera container seedlings were significantly different. Various growth indi- cators of Camellia oleifera container seedlings cultivated in the substrate containing 40% of yellow clay soil + 15% of surface soil of pine forest + 20% of decomposed edible fungus + 20% of peat soil + 5% of dung and dirt exceeded that of the control and other substrate formulae, which could be used as the optimal substrate formula for the container nursery of Camellia oleifera. [Conclusion] This study screened the optimal substrate formula for the container nursery of Camellia oleifera, which provided technical reference for the cultivation of Camellia oleifera container seedlings.展开更多
[ Objective] The research aimed to study effects of material physical properties on white-rot fungi mycelial growth and provide theoretical basis for further expanding the application range of white-rot fungi. [ Metho...[ Objective] The research aimed to study effects of material physical properties on white-rot fungi mycelial growth and provide theoretical basis for further expanding the application range of white-rot fungi. [ Method Four common species of white-rot fungi were cultivated by wood meal fowl dung mixture in test tube and culture dishes. The relationship between physical properties of culture material and the growth of these mycelials were studied. [Result] The results showed the water retention capacity of culture material was decreased with the increasing of its grain size and porosity, but the decrease of its specific gravity reduced the material water retention. And the dehydration rate of medium prepared with these materials at the same moisture conditions tended to increase. These physical properties of material, such as grain size, specific gravity, porosity, water retention and water drainage, influenced the growth of white-rot fungi mycelial by affecting the moisture and ventilation condition of media. The results hinted that above material physical properties had feedback effects on the growth of white-rot fungi mycelia. [ Conclution] Physical properties of culture material have significant effects on the growth of white-rot fungi mycelial.展开更多
Protoplasts prepared from tobacco (Nicotiana tabacum L., cultivar BY-2) suspension cells have similar morphological characteristics to those in animal cells. The hallmarks of apoptosis such as condensation and periphe...Protoplasts prepared from tobacco (Nicotiana tabacum L., cultivar BY-2) suspension cells have similar morphological characteristics to those in animal cells. The hallmarks of apoptosis such as condensation and peripheral distribution of nuclei, TUNEL positive reaction, and DNA ladders were observed when tobacco protoplasts were treated with the hydroxyl radical generating system (1.0 mmol/L FeSO4/0.5 mmol/L H2O2). In animals, the loss of transmembrane potential (DeltaPsi(m)) and the exposure of phospholipid phosphatidylserine (PS) are believed to be the main apoptosis events. To test whether these significant processes take place in plants, flow cytometry was used to detect annexin V binding and changes in DeltaPsi(m). Results showed that the PS turned out from inner membrane and DeltaPsi(m) gradually decreased during the apoptosis. All these apoptotic characteristics proved that hydroxyl radicals can cause typical programmed cell death (PCD) in tobacco protoplasts and this design can be served as an effective experiment system to explore the mechanism of plant apoptosis.展开更多
A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon di...A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon directly from a bio-syngas through a one-stage pro-cess. The effects of zeolite type, zeolite content, Si/Al ratio and preparation method on catalyst texture and its reaction performance were investigated. Higher selectivities and yields of liquid products were obtained by using bifunctional catalysts. The yields of liquid hydrocarbons decreased in the order CCM-ZSM-5〉CCM-SAPO-34〉CCM-Y〉CCM-MCM-41. CCM-ZSM-5 (20wt%, Si/Al=100) prepared by coprecipitation method displayed the optimal catalytic performance with the highest CO conversion (76%) and yield of liquid products (30%). The catalysts were characterized by N2 adsorption/desorption, NH3-TPD, XRD, and H2-TPR analysis. The results showed that higher speci c surface areas and pore volumes of bifunctional catalysts were achieved by adding zeolites into CuCoMn precursors. Medium pore dimension and moderate acidity in CCM-ZSM-5 were observed, which proba-bly resulted in its excellent reaction performance. Additionally, a higher number of weaker acid sites (weak and/or medium acid sites) were formed by increasing ZSM-5 content in CCM-ZSM-5 or decreasing Si/Al ratio in ZSM-5. It was also seen that metal dispersion was higher and reducibility of metal ions was easier on the CCM-ZSM-5 catalyst prepared by coprecipitation. The higher alcohols-to-hydrocarbon process provides a promising route to hydrocarbon fuels via higher alcohols from syngas or biobased feedstocks.展开更多
[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine...[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine river sand and arable layer soil by mixing according to certain volume proportions was caried out,in order to investigate the physical and chemical properties of different organic-material seedling-raising substrata and the effects of these substrata on seedling growth.[Method] The experiment raised seedlings in greenhouses and adopted randomized block arrangement.[Result] The substratum of biochar mixed with maize stalks and rice husks could increase the maximum water-holding capacity of the substratum,reduce the volume weight of the substratum and improve the buffering effect of the substratum.It also had great effects on the contents of alkali-hydrolyzale nitrogen and rapidly available potassium in the substratum,and could improve the root number and substantial degree of rice seedlings.[Conclusion] Biochar with maize stalks and rice husks(the treament HC) is the optimal substratum in this study.展开更多
[ Objective ] The aim of the research was to study the expression profile changes of genes involved in lipid metabolism pathway during liver regeneration in mice. [ Method] The CCI4 induced mouse model of liver regene...[ Objective ] The aim of the research was to study the expression profile changes of genes involved in lipid metabolism pathway during liver regeneration in mice. [ Method] The CCI4 induced mouse model of liver regeneration was established and the total RNA was isolated from liver tissue of mouse. Then the changes of genes involved in lipid metabolism pathway during different stages of liver regeneration were detected through micro-array chip gene technique and their specific functions were also analyzed. [ Result] Dudng the process of liver regeneration, the expression level of 98 genes involved in lipid metabolism pathway changed, which were divided into eight groups according to change trend. In the mass, the expression of genes was inhibited in the early stage and up-regulated in the late phase. And the gene expression associated with fatty acid synthesis pathway was mainly up-regulated while the catabolic pathway did not change significantly. Most of genes involved in bile acid synthesis pathway were suppressed before 4.5 d and up-regulated after 4.5 d or 7 d. [ Conclusion] During the process of liver regeneration, the genes associated with lipid metabolism are expressed in different trends, and this data should provide a specific range of genes for further studying the regulation effect of lipid metabolism related pathway on liver regeneration.展开更多
[Objective] This study aimed to shorten the multiplication culture and root- ing culture periods of Rh. chrysanthum Pall. [Method] The Rh. chrysanthum Pall tis- sue culture plantlets collected from Changbai Mountain w...[Objective] This study aimed to shorten the multiplication culture and root- ing culture periods of Rh. chrysanthum Pall. [Method] The Rh. chrysanthum Pall tis- sue culture plantlets collected from Changbai Mountain were used as material, and the effects of different hormone combinations and coconut milk on the proliferation and differentiation of Rh. chrysanthum Pall tissue culture plantlets were investigated. In addition, the rooting medium and transplanting matrix for Rh. chrysanthum Pall tissue culture plantlets were explored. [Result] The medium composed of modified MS, iBA (3 mg/L) and ZT (1.5 mg/L) was the optimum medium for subculture mul- tiplication of Rh. chrysanthum Pall tissue culture plantlets. The multiplication multiple and average plant height were significantly improved by adding coconut milk into the medium (150 mg/L). [Conclusion] For Rh. chrysanthum Pall tissue culture plantlets, the optimum rooting culture medium was composed of modified MS (1/4) and IBA (5.0 mg/L), and the tissue culture plantlets began to root 8 d after the inoculation. The root induction treatment was carried out after a 15-d sand culture, and the suitable matrix was composed of tufty soil, humus soil and perlite (2:1:1) with a survival rate of 95.66%.展开更多
An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization,...An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization, which allows matrix addition by condensation onto the laboratory-generated bioaerosol particles. The final coated particle exiting from the con- denser is then introduced into the aerodynamic particle sizer spectrometer or home-built aerosol laser time-of-flight mass spectrometer, and its aerodynamic size directly effects on the matrix-to-analyte molar ratio, which is very important for MALDI technique. In order to observe the protonated analyte molecular ion, and then determine the classification of bi- ological aerosols, the matrix-to-analyte molar ratio must be appropriate. Four experimental parameters, including the temperature of the heated reservoir, the initial particle size, its number concentration, and the matrix material, were tested experimentally to analyze their influences on the final particle size. This technique represents an on-line system of detection that has the potential to provide rapid and reliable identification of airborne biological aerosols.展开更多
[Objective] This study aimed to screen endophytic bacteria which is antag- onistic to cotton Fusarium wilt. [Method] Fresh cotton plants collected from cotton- growing areas in Jingzhou City, Hubei Province were used ...[Objective] This study aimed to screen endophytic bacteria which is antag- onistic to cotton Fusarium wilt. [Method] Fresh cotton plants collected from cotton- growing areas in Jingzhou City, Hubei Province were used as experimental materials to isolate endophytic bacteria. Through chitinase test and co-culturing both micro-or- ganisms side by side on the same PDA culture plate, antagonistic strains to cotton Fusarium wilt were screened. [Result] A total of 83 bacterial isolates were obtained from cotton plants grown in the fields, six of which were chitinase-productive bacte- ria. Through chitinase test and co-culturing both micro-organisms side by side on the same PDA culture plate, strain V-8 which had the strongest antagonistic effect on Fusarium oxysporum f. sp. vasinfectum was screened. Strain V-8 had a wider anti- fungal spectrum with certain inhibitory effect on all the six important pathogenic fungi including Fusarium oxysporum f. sp niveum; it colonized stably in the rhizospheric soil of cotton, with a colonization density of up to 6.2x10s cfu/g fifty days after inoc- ulation; the relative effect on controlling cotton Fusarium wilt in pot test was 73.2%. The Findings of this study suggested that strain V-8 had great potential for biological control of cotton Fusarium wilt and could be taken as a substantial material for the cloning of chitinase genes. [Conclusion] The results from this study provides bases for the control of cotton fusarium wilt, as well as the exploitation of endophytic bac- teria resources in cotton and the development of novel biological pesticides.展开更多
Objective: To find out a method of extraction and purification of bone morphogenetic protein (BMP) from osteosarcoma cell conditioned medium, and evaluate the biological activity of BMP.Methods: Conditioned medium of ...Objective: To find out a method of extraction and purification of bone morphogenetic protein (BMP) from osteosarcoma cell conditioned medium, and evaluate the biological activity of BMP.Methods: Conditioned medium of osteosarcoma cell lines (MG-63) was collected, concentrated and dialyzed. The concentrated protein was purified through gel chromatography on Sephcryl-S-100. The purified protein was tested by BMP monoclonal antibody (McAb), its molecular weight (MW) was determined by SDS-PAGE and its biological activity was demonstrated by heterotopic ossification.Results: The purified protein was proved to be BMP by BMP McAb, had a satisfactory heterotopic ossification, and its MW was about 21 kD.Conclusion: BMP existed in the conditioned medium of osteosarcoma cell and had a satisfactory biological activity after purification. Because osteosarcoma cell can be cultured and grew for a long timein vitro, this method will be helpful to a vast extraction of BMP and clinical application. Key words osteosarcoma cell - conditioned medium - bone morphogenetic protein - protein purification This project was a key scientific and technological program of Hubei Provicial Scientific and Technological Committee (No. 002p1503).展开更多
Epithelial-mesenchymal transition (EMT) is initially considered as a physiological phenomenon during the embryogenesis of mammals, as well as a basic biological event maintaining the stability of the vital body. Rec...Epithelial-mesenchymal transition (EMT) is initially considered as a physiological phenomenon during the embryogenesis of mammals, as well as a basic biological event maintaining the stability of the vital body. Recent researches indicated that EMT plays a critical role in various tumors progression, through which epithelial cancers invade and metastasize. The cell characteristics are changed during EMT, in which the cells lose cell-cell and cell-matrix interactions and apical polarity, reorganize their cytoskeleton, and become isolated, motile, as well as resistant to anoikis, then become spindle-shaped mesenchymal cells. This review lays emphasis on studying the cell morphogenesis, makers and molecular mechanism regulation about EMT, discussing the relationship between the EMT and the cancer development and metastasis.展开更多
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金The National Key Research and Development Program of China(2017YFC0504406)The Key Research and Development Program of Ningxia Hui Autonomous Region(2018BFG02002)。
基金Supported by the Innovation Foundation For Postgraduate of Guangxi University(2008105930905D001) the Tackle Key Program in Science and Technology of Science and Technology Bureau of Guangxi Province(0815008-2-4)~~
文摘[Objective] The experiment aimed to set up a method for isolating and culturing endometrial stromal cells (BESC) and endometrial glandular epithelial cells(BEGEC) of buffalo as well as laid foundation for studying biological mechanism of embryo implantation and uterine diseases. [Method] The enzymatic digestion method, scraping method, serial filtration and differential velocity adherent technique were used to isolate BESC and BEGEC, then immunocytochemical method and TRYPAN-Blue assay were used to determine the purity and survival rate of isolated cells. [Result] The BESC and BEGEC were successfully isolated and cultured while immunocytochemical method and cell count method demonstrated that the purity was over 90%. The result of TRYPAN-Blue assay shown that survival rate of BESC and BEGEC was 91% and 78% respectively. [Conclusion] The enzymatic digestion method, scraping method, serial filtration and differential velocity adherent technique could isolate BESC and BEGEC with high purity.
文摘Metallothionein gene (MT) has been transferred into mushroom protoplasts by electroporation. It is a low molecular weight, cysteine-rich and metal-binding protein. MT can bind metals. Its synthesis is induced by Zn ion. Thus the expression of MT gene in mushroom can improve the accumulation of Zn in this fungus. This transgenic mushroom, consumed as a kind of vegetable, can supply the necessary Zn to people who are short of the element. When protoplasts were prepared, the concentration (C) of protoplasts is 6.745 x 10(6) /mL. After protoplast electroporation, the transformation rate of protoplasts is 0.01 %. Polymerase chain reaction (PCR) analysis showed that the gene had been integrated into the mushroom chromosome, SDS-PAGE, Western blot analysis indicated that the MT gene had been expressed in the transgenic mushroom. The expressing level, detected by ELISA, is 0.6 % - 0.8 %. Tested for metal resistance, the wild-type mushroom growth was inhibited on die medium containing 1.0 - 1.2 mmoL/L ZnSO4. While the transgenic mushroom was inhibited on the medium containing 1. 5 - 2.0 mmol/L ZnSO4. The mycelium can develop into hymenophore in the medium of rice bran: sawdust = 1: 3, and not in the medium of rice bran: sawdust = 1: 4.
文摘Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.
基金Supported by Natural Science Foundation of Hubei Province(2012FFC03101)~~
文摘[Objective] This study aimed to investigate the optimal component of culti- vation medium for container seedling raising of Camellia oleifera. [Method] In the application of container nursery technology of Camellia oleifera grafting in emergent stocks, yellow clay soil, surface soil of pine forest, decomposed edible fungus, peat soil, dung and dirt were mixed by different proportions into five formulae as nursery substrates, with garden soil as the control, in order to investigate the influences of various substrates on the growth of annual Camellia oleifera container seedlings by using randomized block design based on variance analysis and multiple comparisons, and to screen the optimal substrate formula for container nursery of Camellia oleifera. [Result] The influences of different substrates on the transplanting survival rate, seedling height, basal diameter, height-diameter ratio and lateral root length of Camellia oleifera container seedlings were significantly different. Various growth indi- cators of Camellia oleifera container seedlings cultivated in the substrate containing 40% of yellow clay soil + 15% of surface soil of pine forest + 20% of decomposed edible fungus + 20% of peat soil + 5% of dung and dirt exceeded that of the control and other substrate formulae, which could be used as the optimal substrate formula for the container nursery of Camellia oleifera. [Conclusion] This study screened the optimal substrate formula for the container nursery of Camellia oleifera, which provided technical reference for the cultivation of Camellia oleifera container seedlings.
基金Supported by Qian Jiang Manpower Program of Zhejiang Province Science and Technology Department (No.2007R10039)National Basic Research Program of China (No.2005CB724204)Under-graduate Technology Innovation Program of Zhejiang Province~~
文摘[ Objective] The research aimed to study effects of material physical properties on white-rot fungi mycelial growth and provide theoretical basis for further expanding the application range of white-rot fungi. [ Method Four common species of white-rot fungi were cultivated by wood meal fowl dung mixture in test tube and culture dishes. The relationship between physical properties of culture material and the growth of these mycelials were studied. [Result] The results showed the water retention capacity of culture material was decreased with the increasing of its grain size and porosity, but the decrease of its specific gravity reduced the material water retention. And the dehydration rate of medium prepared with these materials at the same moisture conditions tended to increase. These physical properties of material, such as grain size, specific gravity, porosity, water retention and water drainage, influenced the growth of white-rot fungi mycelial by affecting the moisture and ventilation condition of media. The results hinted that above material physical properties had feedback effects on the growth of white-rot fungi mycelia. [ Conclution] Physical properties of culture material have significant effects on the growth of white-rot fungi mycelial.
文摘Protoplasts prepared from tobacco (Nicotiana tabacum L., cultivar BY-2) suspension cells have similar morphological characteristics to those in animal cells. The hallmarks of apoptosis such as condensation and peripheral distribution of nuclei, TUNEL positive reaction, and DNA ladders were observed when tobacco protoplasts were treated with the hydroxyl radical generating system (1.0 mmol/L FeSO4/0.5 mmol/L H2O2). In animals, the loss of transmembrane potential (DeltaPsi(m)) and the exposure of phospholipid phosphatidylserine (PS) are believed to be the main apoptosis events. To test whether these significant processes take place in plants, flow cytometry was used to detect annexin V binding and changes in DeltaPsi(m). Results showed that the PS turned out from inner membrane and DeltaPsi(m) gradually decreased during the apoptosis. All these apoptotic characteristics proved that hydroxyl radicals can cause typical programmed cell death (PCD) in tobacco protoplasts and this design can be served as an effective experiment system to explore the mechanism of plant apoptosis.
文摘A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon directly from a bio-syngas through a one-stage pro-cess. The effects of zeolite type, zeolite content, Si/Al ratio and preparation method on catalyst texture and its reaction performance were investigated. Higher selectivities and yields of liquid products were obtained by using bifunctional catalysts. The yields of liquid hydrocarbons decreased in the order CCM-ZSM-5〉CCM-SAPO-34〉CCM-Y〉CCM-MCM-41. CCM-ZSM-5 (20wt%, Si/Al=100) prepared by coprecipitation method displayed the optimal catalytic performance with the highest CO conversion (76%) and yield of liquid products (30%). The catalysts were characterized by N2 adsorption/desorption, NH3-TPD, XRD, and H2-TPR analysis. The results showed that higher speci c surface areas and pore volumes of bifunctional catalysts were achieved by adding zeolites into CuCoMn precursors. Medium pore dimension and moderate acidity in CCM-ZSM-5 were observed, which proba-bly resulted in its excellent reaction performance. Additionally, a higher number of weaker acid sites (weak and/or medium acid sites) were formed by increasing ZSM-5 content in CCM-ZSM-5 or decreasing Si/Al ratio in ZSM-5. It was also seen that metal dispersion was higher and reducibility of metal ions was easier on the CCM-ZSM-5 catalyst prepared by coprecipitation. The higher alcohols-to-hydrocarbon process provides a promising route to hydrocarbon fuels via higher alcohols from syngas or biobased feedstocks.
文摘[Objective] With a rice variety "Long Rice 11" as a test cultivar,an experiment of raising rice seedlings with the new substrata prepared from biochar,and maize stalks,rice husks,organic fertilizer,turf,zeolite,fine river sand and arable layer soil by mixing according to certain volume proportions was caried out,in order to investigate the physical and chemical properties of different organic-material seedling-raising substrata and the effects of these substrata on seedling growth.[Method] The experiment raised seedlings in greenhouses and adopted randomized block arrangement.[Result] The substratum of biochar mixed with maize stalks and rice husks could increase the maximum water-holding capacity of the substratum,reduce the volume weight of the substratum and improve the buffering effect of the substratum.It also had great effects on the contents of alkali-hydrolyzale nitrogen and rapidly available potassium in the substratum,and could improve the root number and substantial degree of rice seedlings.[Conclusion] Biochar with maize stalks and rice husks(the treament HC) is the optimal substratum in this study.
文摘[ Objective ] The aim of the research was to study the expression profile changes of genes involved in lipid metabolism pathway during liver regeneration in mice. [ Method] The CCI4 induced mouse model of liver regeneration was established and the total RNA was isolated from liver tissue of mouse. Then the changes of genes involved in lipid metabolism pathway during different stages of liver regeneration were detected through micro-array chip gene technique and their specific functions were also analyzed. [ Result] Dudng the process of liver regeneration, the expression level of 98 genes involved in lipid metabolism pathway changed, which were divided into eight groups according to change trend. In the mass, the expression of genes was inhibited in the early stage and up-regulated in the late phase. And the gene expression associated with fatty acid synthesis pathway was mainly up-regulated while the catabolic pathway did not change significantly. Most of genes involved in bile acid synthesis pathway were suppressed before 4.5 d and up-regulated after 4.5 d or 7 d. [ Conclusion] During the process of liver regeneration, the genes associated with lipid metabolism are expressed in different trends, and this data should provide a specific range of genes for further studying the regulation effect of lipid metabolism related pathway on liver regeneration.
基金Supported by Students'Innovation and Entrepreneurship Training Program of Yanbian University in 2015(ydbksky2015252)~~
文摘[Objective] This study aimed to shorten the multiplication culture and root- ing culture periods of Rh. chrysanthum Pall. [Method] The Rh. chrysanthum Pall tis- sue culture plantlets collected from Changbai Mountain were used as material, and the effects of different hormone combinations and coconut milk on the proliferation and differentiation of Rh. chrysanthum Pall tissue culture plantlets were investigated. In addition, the rooting medium and transplanting matrix for Rh. chrysanthum Pall tissue culture plantlets were explored. [Result] The medium composed of modified MS, iBA (3 mg/L) and ZT (1.5 mg/L) was the optimum medium for subculture mul- tiplication of Rh. chrysanthum Pall tissue culture plantlets. The multiplication multiple and average plant height were significantly improved by adding coconut milk into the medium (150 mg/L). [Conclusion] For Rh. chrysanthum Pall tissue culture plantlets, the optimum rooting culture medium was composed of modified MS (1/4) and IBA (5.0 mg/L), and the tissue culture plantlets began to root 8 d after the inoculation. The root induction treatment was carried out after a 15-d sand culture, and the suitable matrix was composed of tufty soil, humus soil and perlite (2:1:1) with a survival rate of 95.66%.
文摘An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization, which allows matrix addition by condensation onto the laboratory-generated bioaerosol particles. The final coated particle exiting from the con- denser is then introduced into the aerodynamic particle sizer spectrometer or home-built aerosol laser time-of-flight mass spectrometer, and its aerodynamic size directly effects on the matrix-to-analyte molar ratio, which is very important for MALDI technique. In order to observe the protonated analyte molecular ion, and then determine the classification of bi- ological aerosols, the matrix-to-analyte molar ratio must be appropriate. Four experimental parameters, including the temperature of the heated reservoir, the initial particle size, its number concentration, and the matrix material, were tested experimentally to analyze their influences on the final particle size. This technique represents an on-line system of detection that has the potential to provide rapid and reliable identification of airborne biological aerosols.
基金Supported by the Research Fund for Mid-career and Young Scientists of Education Department of Hubei Province(Q2011130)~~
文摘[Objective] This study aimed to screen endophytic bacteria which is antag- onistic to cotton Fusarium wilt. [Method] Fresh cotton plants collected from cotton- growing areas in Jingzhou City, Hubei Province were used as experimental materials to isolate endophytic bacteria. Through chitinase test and co-culturing both micro-or- ganisms side by side on the same PDA culture plate, antagonistic strains to cotton Fusarium wilt were screened. [Result] A total of 83 bacterial isolates were obtained from cotton plants grown in the fields, six of which were chitinase-productive bacte- ria. Through chitinase test and co-culturing both micro-organisms side by side on the same PDA culture plate, strain V-8 which had the strongest antagonistic effect on Fusarium oxysporum f. sp. vasinfectum was screened. Strain V-8 had a wider anti- fungal spectrum with certain inhibitory effect on all the six important pathogenic fungi including Fusarium oxysporum f. sp niveum; it colonized stably in the rhizospheric soil of cotton, with a colonization density of up to 6.2x10s cfu/g fifty days after inoc- ulation; the relative effect on controlling cotton Fusarium wilt in pot test was 73.2%. The Findings of this study suggested that strain V-8 had great potential for biological control of cotton Fusarium wilt and could be taken as a substantial material for the cloning of chitinase genes. [Conclusion] The results from this study provides bases for the control of cotton fusarium wilt, as well as the exploitation of endophytic bac- teria resources in cotton and the development of novel biological pesticides.
基金This project was a key scientific and technological program of Hubei Provicial Scientific and Technological Committee (No.002p1503).
文摘Objective: To find out a method of extraction and purification of bone morphogenetic protein (BMP) from osteosarcoma cell conditioned medium, and evaluate the biological activity of BMP.Methods: Conditioned medium of osteosarcoma cell lines (MG-63) was collected, concentrated and dialyzed. The concentrated protein was purified through gel chromatography on Sephcryl-S-100. The purified protein was tested by BMP monoclonal antibody (McAb), its molecular weight (MW) was determined by SDS-PAGE and its biological activity was demonstrated by heterotopic ossification.Results: The purified protein was proved to be BMP by BMP McAb, had a satisfactory heterotopic ossification, and its MW was about 21 kD.Conclusion: BMP existed in the conditioned medium of osteosarcoma cell and had a satisfactory biological activity after purification. Because osteosarcoma cell can be cultured and grew for a long timein vitro, this method will be helpful to a vast extraction of BMP and clinical application. Key words osteosarcoma cell - conditioned medium - bone morphogenetic protein - protein purification This project was a key scientific and technological program of Hubei Provicial Scientific and Technological Committee (No. 002p1503).
基金Supported by the grants from the Natural Science Foundation of China (No. 81000998) Natural Science Foundation of Hubei Province of China (No. 2007ABA248)
文摘Epithelial-mesenchymal transition (EMT) is initially considered as a physiological phenomenon during the embryogenesis of mammals, as well as a basic biological event maintaining the stability of the vital body. Recent researches indicated that EMT plays a critical role in various tumors progression, through which epithelial cancers invade and metastasize. The cell characteristics are changed during EMT, in which the cells lose cell-cell and cell-matrix interactions and apical polarity, reorganize their cytoskeleton, and become isolated, motile, as well as resistant to anoikis, then become spindle-shaped mesenchymal cells. This review lays emphasis on studying the cell morphogenesis, makers and molecular mechanism regulation about EMT, discussing the relationship between the EMT and the cancer development and metastasis.