Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A ...Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs). Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1MMP by forming a ternary complex. bee MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface. MT1-MMP is found in cultured invasive cancer cells at the invadopodia. The MTMMP/TIMP-2/ MMP- 2 system t bus provides localized expression of proteolysis of the extracellular matrix required for cell migration.展开更多
The matrix metalloproteinase (MMP) stromelysin-3 (ST3) has long been implicated to play an important role in extracellular matrix (ECM) remodeling and cell fate determination during normal and pathological processes. ...The matrix metalloproteinase (MMP) stromelysin-3 (ST3) has long been implicated to play an important role in extracellular matrix (ECM) remodeling and cell fate determination during normal and pathological processes. However like other MMPs, the molecular basis of ST3 function in vivo remains unclear due to the lack of information on its physiological substrates. Furthermore, ST3 has only weak activities toward all tested ECM proteins. Using thyroid hormone-dependent Xenopus laevis metamorphosis as a model, we demonstrated previously that ST3 is important for apoptosis and tissue morphogenesis during intestinal remodeling. Here, we used yeast two-hybrid screen with mRNAs from metamorphosing tadpoles to identify potential substrate of ST3 during development. We thus isolated the 37 kd laminin receptor precursor (LR). We showed that LR binds to ST3 in vitro and can be cleaved by ST3 at two sites distinct from where other MMPs cleave. Through peptide sequencing, we determined that the two cleavage sites are in the extracellular domain between the transmembrane domain and laminin binding sequence. Furthermore, we demon strated that these cleavage sites are conserved in human LR. These results together with high levels of human LR and ST3 expression in carcinomas suggest that LR is a likely in vivo substrate of ST3 and that its cleavage by ST3 may alter cell-extracellular matrix interaction, thus, playing a role in mediating the effects of ST3 on cell fate and behavior ob- served during development and pathogenesis.展开更多
Human acidic and basic fibroblast growth factors (aFGF and bFGF) are classic and well characterized members of the heparin binding growth factor family. Heparin is generally thought to play an extremely important rol...Human acidic and basic fibroblast growth factors (aFGF and bFGF) are classic and well characterized members of the heparin binding growth factor family. Heparin is generally thought to play an extremely important role in regulating aFGF and bFGF bioactivities through its strong binding with them. In order to unravel the mechanism of the interactions between heparin and FGFs, and evaluate the importance of heparin sulfate groups' binding with FGFs, surface plasmon resonance analyses were performed using IAsys Cuvettes System. Heparin and its regioselectively desulfated derivatives were immobilized on the cuvettes. aFGF and bFGF solutions with different concentrations were pipetted into the cuvettes and the progress of the interaction was monitored in real\|time by Windows based software, yielding kinetic and equilibrium constants for these interactions. In addition, in order to reduce the delicate difference among the cuvettes, inhibition analyses of mixture of FGFs and immobilized native heparin by modified heparins were also done. The data from these two methods were similar, indicating that all sulfate groups at 2 O, 6 O and N in heparin were required for the binding to aFGF; and that their contribution to the binding was in the order 2 O, N and 6 O sulfate group. In contrast, definite contribution of the 6 O sulfate group to the binding with bFGF was most apparent, while the other two sulfate groups appeared to be necessary in the order 2 O and N sulfate group. These methods established here can be used for analysing the effect of sulfate groups in heparin on the binding with other human FGF members or other heparin binding proteins.展开更多
Nitrogen-containing carbons were prepared by modification of activated carbons.The modified carbons were used as electrode materials with improved electrochemical performance.Precursor anthracite was activated by KOH(...Nitrogen-containing carbons were prepared by modification of activated carbons.The modified carbons were used as electrode materials with improved electrochemical performance.Precursor anthracite was activated by KOH(KOH:anthracite= 1:1), modified by melamine or urea and then treated at 1173 K to obtain the modified carbons.The porous structure, the chemical composition and the electrochemical characteristics of the carbons were investigated by nitrogen sorption, XPS and electrochemical methods respectively.Electrochemical experiments were performed in an organic electrolytic solution of 1 M(C2H5)4NBF4/PC.The samples modified by the different methods showed differences in chemical composition that introduced varying degrees of electrochemical performance enhancement.The presence of nitrogen enhanced the electron donor properties and the surface wettability of the activated carbons:this ensured a sufficient utilization of the exposed surface for charge storage.展开更多
The contact angle phenomena and wetting behavior of fatty acids,alcohols and ester used as additives in lubricants onto the rolled copper foil(RCF)surface were studied by the static sessile drop method.Semi-empirical ...The contact angle phenomena and wetting behavior of fatty acids,alcohols and ester used as additives in lubricants onto the rolled copper foil(RCF)surface were studied by the static sessile drop method.Semi-empirical quantum-chemical method studies on the contact angle of these compounds onto surface using several structural parameters were carried out.Molecular refractivity as well as several structural parameters were adopted in the development of quantitative structure-property relationships(QSPR)using genetic function approximation(GFA)statistical analysis method.The results show that quantum parameters are a better choice when predicting the contact angle and wettability of lubricants onto the RCF surface.Contact angle of the compounds serves as a function of their viscosity,interfacial tension,and physicochemical parameters.Alog P,molecular refractivity,molecular flexibility,total molecular mass,solvent surface area,element count,total energy and dipole are the most sensitive ones among the major contributing parameters.Notably,studies of lubricants on the RCF surfaces allow wetting theories to be tested down to the microcosmic scale,which can bring about new insight to predict wettability of lubricants onto RCF surface.展开更多
The effect of an anionic surfactant (sodium dodecyl sulfate, SDS) on the fluorescence properties of nucleic acid with terbium (III) is studied. Results show that ribonucleic acid (RNA) presents fluorescence reaction w...The effect of an anionic surfactant (sodium dodecyl sulfate, SDS) on the fluorescence properties of nucleic acid with terbium (III) is studied. Results show that ribonucleic acid (RNA) presents fluorescence reaction with Tb (III) directly, but deoxyribonucleic acid (DNA) presents similar fluorescence reaction only after its denaturation. In the presence of SDS, the fluorescence intensity is 4.0 times and 3.5 times greater than that of DNA and RNA without SDS.展开更多
The role of roughness and composition on the wetting characteristics of a series of carbon nanofiber based coatings were studied in order to evaluate its superhydrophobic properties. In this study, idealized surfaces ...The role of roughness and composition on the wetting characteristics of a series of carbon nanofiber based coatings were studied in order to evaluate its superhydrophobic properties. In this study, idealized surfaces were created from a smooth stainless steel and aluminium sheets and two other stainless steel sheets with different textured surfaces. All surfaces were coated with carbon nanofiber alcohol solutions in order to generate coatings of variable compositions using mixtures of isopropanol, water and a commercial carbon nanofibre. The optimum concentration of carbon nanofiber in coatings was obtained to produce superhydrophobic surfaces. A general trend of increasing hydrophobicity was observed for coated surfaces as compared to the bare substrate. Individual contact angles were dependent on the nature of the underlying substrate, relative surface pattern, and roughness. Overall wetting properties were dependent upon composition and micro scale roughness of the coatings.展开更多
Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on...Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.展开更多
The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating s...The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.展开更多
Halo-olefinic impurities in 1,1,1,3,3-pentafluoropropane (HFC-245fa) product used as blowing agents, etc. could damage the human body and must be removed. Activated carbon was treated by HCI, HN03 and NaOH, respecti...Halo-olefinic impurities in 1,1,1,3,3-pentafluoropropane (HFC-245fa) product used as blowing agents, etc. could damage the human body and must be removed. Activated carbon was treated by HCI, HN03 and NaOH, respectively. The adsorptive performance of unmodified and modified activated carbons for the removal of a low con- tent of l-chloro-3,3,3-trifluoro-l-propene (HCFC-1233zd), 1,3,3,3-tetrafluoro-l-propene (HFC-1234ze), 1- chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224zb) and 2-chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224xe) halo-olefins in the 1,1,1,3,3-pentafluoropropane (HFC-245fa] product was investigated. These halo-olefinic im- purities could be substantially removed from the HFC-245fa product via the adsorption over activated carbon when the adsorption temperature was under 333 K, which can be attributed to the n-n dispersion interactions between the halo-olefins and carbon graphite layer. The basic surface groups of activated carbon could catalyze the decomposition of HFC-245fa to form HFC-1234ze. However, the significant increase in the amount of surface acidic groups of activated carbon led to a distinct decrease of adsorption capacity due to the reduction in the mi- cropore volume of adsorbent and a decrease in the strength of the n-n dispersive interactions between halo- olefin molecules and carbon basal. The breakthrough time of halo-olefinic impurities on activated carbon in- creased with the increase of molecular mass and the decrease of molecular symmetry.展开更多
The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are so...The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+ ), car-boxyl (-COO- ) and phosphate radicle ion (PO_4~3- ) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the origi-nal n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength.展开更多
文摘Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs). Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1MMP by forming a ternary complex. bee MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface. MT1-MMP is found in cultured invasive cancer cells at the invadopodia. The MTMMP/TIMP-2/ MMP- 2 system t bus provides localized expression of proteolysis of the extracellular matrix required for cell migration.
文摘The matrix metalloproteinase (MMP) stromelysin-3 (ST3) has long been implicated to play an important role in extracellular matrix (ECM) remodeling and cell fate determination during normal and pathological processes. However like other MMPs, the molecular basis of ST3 function in vivo remains unclear due to the lack of information on its physiological substrates. Furthermore, ST3 has only weak activities toward all tested ECM proteins. Using thyroid hormone-dependent Xenopus laevis metamorphosis as a model, we demonstrated previously that ST3 is important for apoptosis and tissue morphogenesis during intestinal remodeling. Here, we used yeast two-hybrid screen with mRNAs from metamorphosing tadpoles to identify potential substrate of ST3 during development. We thus isolated the 37 kd laminin receptor precursor (LR). We showed that LR binds to ST3 in vitro and can be cleaved by ST3 at two sites distinct from where other MMPs cleave. Through peptide sequencing, we determined that the two cleavage sites are in the extracellular domain between the transmembrane domain and laminin binding sequence. Furthermore, we demon strated that these cleavage sites are conserved in human LR. These results together with high levels of human LR and ST3 expression in carcinomas suggest that LR is a likely in vivo substrate of ST3 and that its cleavage by ST3 may alter cell-extracellular matrix interaction, thus, playing a role in mediating the effects of ST3 on cell fate and behavior ob- served during development and pathogenesis.
文摘Human acidic and basic fibroblast growth factors (aFGF and bFGF) are classic and well characterized members of the heparin binding growth factor family. Heparin is generally thought to play an extremely important role in regulating aFGF and bFGF bioactivities through its strong binding with them. In order to unravel the mechanism of the interactions between heparin and FGFs, and evaluate the importance of heparin sulfate groups' binding with FGFs, surface plasmon resonance analyses were performed using IAsys Cuvettes System. Heparin and its regioselectively desulfated derivatives were immobilized on the cuvettes. aFGF and bFGF solutions with different concentrations were pipetted into the cuvettes and the progress of the interaction was monitored in real\|time by Windows based software, yielding kinetic and equilibrium constants for these interactions. In addition, in order to reduce the delicate difference among the cuvettes, inhibition analyses of mixture of FGFs and immobilized native heparin by modified heparins were also done. The data from these two methods were similar, indicating that all sulfate groups at 2 O, 6 O and N in heparin were required for the binding to aFGF; and that their contribution to the binding was in the order 2 O, N and 6 O sulfate group. In contrast, definite contribution of the 6 O sulfate group to the binding with bFGF was most apparent, while the other two sulfate groups appeared to be necessary in the order 2 O and N sulfate group. These methods established here can be used for analysing the effect of sulfate groups in heparin on the binding with other human FGF members or other heparin binding proteins.
基金Projects 50672025 and 50730003 supported by the National Natural Science Foundation of China
文摘Nitrogen-containing carbons were prepared by modification of activated carbons.The modified carbons were used as electrode materials with improved electrochemical performance.Precursor anthracite was activated by KOH(KOH:anthracite= 1:1), modified by melamine or urea and then treated at 1173 K to obtain the modified carbons.The porous structure, the chemical composition and the electrochemical characteristics of the carbons were investigated by nitrogen sorption, XPS and electrochemical methods respectively.Electrochemical experiments were performed in an organic electrolytic solution of 1 M(C2H5)4NBF4/PC.The samples modified by the different methods showed differences in chemical composition that introduced varying degrees of electrochemical performance enhancement.The presence of nitrogen enhanced the electron donor properties and the surface wettability of the activated carbons:this ensured a sufficient utilization of the exposed surface for charge storage.
基金the financial assistance provided by the Introducing the Talent Research Start-up Fund(No.YKJ201706)the National Natural Science Foundation of China(No.51474025)
文摘The contact angle phenomena and wetting behavior of fatty acids,alcohols and ester used as additives in lubricants onto the rolled copper foil(RCF)surface were studied by the static sessile drop method.Semi-empirical quantum-chemical method studies on the contact angle of these compounds onto surface using several structural parameters were carried out.Molecular refractivity as well as several structural parameters were adopted in the development of quantitative structure-property relationships(QSPR)using genetic function approximation(GFA)statistical analysis method.The results show that quantum parameters are a better choice when predicting the contact angle and wettability of lubricants onto the RCF surface.Contact angle of the compounds serves as a function of their viscosity,interfacial tension,and physicochemical parameters.Alog P,molecular refractivity,molecular flexibility,total molecular mass,solvent surface area,element count,total energy and dipole are the most sensitive ones among the major contributing parameters.Notably,studies of lubricants on the RCF surfaces allow wetting theories to be tested down to the microcosmic scale,which can bring about new insight to predict wettability of lubricants onto RCF surface.
文摘The effect of an anionic surfactant (sodium dodecyl sulfate, SDS) on the fluorescence properties of nucleic acid with terbium (III) is studied. Results show that ribonucleic acid (RNA) presents fluorescence reaction with Tb (III) directly, but deoxyribonucleic acid (DNA) presents similar fluorescence reaction only after its denaturation. In the presence of SDS, the fluorescence intensity is 4.0 times and 3.5 times greater than that of DNA and RNA without SDS.
文摘The role of roughness and composition on the wetting characteristics of a series of carbon nanofiber based coatings were studied in order to evaluate its superhydrophobic properties. In this study, idealized surfaces were created from a smooth stainless steel and aluminium sheets and two other stainless steel sheets with different textured surfaces. All surfaces were coated with carbon nanofiber alcohol solutions in order to generate coatings of variable compositions using mixtures of isopropanol, water and a commercial carbon nanofibre. The optimum concentration of carbon nanofiber in coatings was obtained to produce superhydrophobic surfaces. A general trend of increasing hydrophobicity was observed for coated surfaces as compared to the bare substrate. Individual contact angles were dependent on the nature of the underlying substrate, relative surface pattern, and roughness. Overall wetting properties were dependent upon composition and micro scale roughness of the coatings.
基金the High Technology Research and Development Program of China(No.2011AA060803)the Beijing Key Laboratory Annual Program(No.Z121103009212039)
文摘Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.
基金Supported by Natural Science Foundation of Hebei Province under Grant No.A2010000004the National Natural Science Foundation of China under Grant Nos.10704022 and 60736042the Key Subject Construction Project of Hebei Province University
文摘The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.
基金Supported by the Major Project of Green Chemical Industry of Zhejiang Province(2007C11043)
文摘Halo-olefinic impurities in 1,1,1,3,3-pentafluoropropane (HFC-245fa) product used as blowing agents, etc. could damage the human body and must be removed. Activated carbon was treated by HCI, HN03 and NaOH, respectively. The adsorptive performance of unmodified and modified activated carbons for the removal of a low con- tent of l-chloro-3,3,3-trifluoro-l-propene (HCFC-1233zd), 1,3,3,3-tetrafluoro-l-propene (HFC-1234ze), 1- chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224zb) and 2-chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224xe) halo-olefins in the 1,1,1,3,3-pentafluoropropane (HFC-245fa] product was investigated. These halo-olefinic im- purities could be substantially removed from the HFC-245fa product via the adsorption over activated carbon when the adsorption temperature was under 333 K, which can be attributed to the n-n dispersion interactions between the halo-olefins and carbon graphite layer. The basic surface groups of activated carbon could catalyze the decomposition of HFC-245fa to form HFC-1234ze. However, the significant increase in the amount of surface acidic groups of activated carbon led to a distinct decrease of adsorption capacity due to the reduction in the mi- cropore volume of adsorbent and a decrease in the strength of the n-n dispersive interactions between halo- olefin molecules and carbon basal. The breakthrough time of halo-olefinic impurities on activated carbon in- creased with the increase of molecular mass and the decrease of molecular symmetry.
文摘The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+ ), car-boxyl (-COO- ) and phosphate radicle ion (PO_4~3- ) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the origi-nal n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength.