In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Instit...In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Institute of Nuclear Energy Safety Technology,was selected as the reference reactor for ADS development,as well as for the technology development of the Generation IV lead-cooled fast reactor.The conceptual design of CLEAR-I with 10 MW thermal power has been completed.KYLIN series lead-bismuth eutectic experimental loops have been constructed to investigate the technologies of the coolant,key components,structural materials,fuel assembly,operation,and control.In order to validate and test the key components and integrated operating technology of the lead-based reactor,the lead alloy-cooled non-nuclear reactor CLEAR-S,the lead-based zero-power nuclear reactor CLEAR-0,and the lead-based virtual reactor CLEAR-V are under realization.展开更多
For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode mat...For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode materials on the conducting substrates greatly simplifies the electrode fabrication process without using any binders or conductive additives. Moreover, the well-ordered arrays closely connected to the current collectors can provide direct electron transport pathways and enhanced accommodation of strains arisen from lithium ion lithiation/delithiation. This article summarizes our recent work on design and construction of lithium-ion battery electrodes on metal substrates. An aqueous solution-based process and a microemulsion-mediated process have been respectively presented to control the kinetic and thermodynamic processes for the micro-/nanostructured array growth on metal substrates, with particular attention to CuO nanorod arrays and microcog arrays successfully prepared on Cu foil substrates. They can be directly used as binder-free electrodes to build advanced lithium-ion batteries with high energy, high safety and high stability.展开更多
This study aims to illustrate the Japanese electricity supply system after the earthquake with consideration of Japanese uniqueness including its 10 separate grids with weak connections between them and the geographic...This study aims to illustrate the Japanese electricity supply system after the earthquake with consideration of Japanese uniqueness including its 10 separate grids with weak connections between them and the geographical gap between renewable potential and electricity consumptions using GIS data for a TIMES model. We take FIT (feed-in-tariff) as a policy measure to promote renewables. To consider policies to promote renewables, we need a modelling approach where the electricity system of the entire country is represented with extremely disaggregated information on existing stock and future potentials of renewables. By building up technology models based on detailed disaggregate information on existing stocks and future potentials of renewables at the sub-regional level, we can develop renewables-related policies which reflect more realistic conditions. According to the simulation results, high FIT prices do not guarantee more introductions of renewables. High FIT prices make the huge potential of renewables commercially viable, but at the same time, they limit the maximum introduction of renewables. In addition, a high FIT budget does not guarantee more renewable introduction.展开更多
In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university...In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university is 42 years with an EUI (energy use intensity) of 23 kWh/m^2/y. Current building and energy codes limit the EUI to 16 kWh/m^2/y for new school buildings; this benchmark can vary depending on climate, occupancy, and other contextual factors. Although the LEED (leadership in energy and environmental design) system provides a set of guidelines to rate sustainable buildings, studies have shown that 28%-35% of the educational LEED-rated buildings use more energy than their conventional counterparts. This paper examines the issues specific to a LEED-rated design addition to an existing university building. The forum, a lecture hall expansion of to an existing building at the University of Kansas, has been proposed as environmentally friendly and energy-efficient building addition. Comfort and health aspects have been considered in the design in order to obtain LEED platinum certificate. The forum's energy performance strategies include a double-skin facade to reduce energy consumption and PV (photovoltaic) panels to generate onsite energy. This study considers various scenarios to meet NZEB (net-zero energy building) criteria and maximize energy savings. The feasibility of NZE criteria is evaluated for: (a) seasonal comparison; (b) facility occupancy; (c) PV panels' addition in relation to double skin facade. The results of NZEB approach are compared to LEED platinum requirements, based on Rol (return on investment) and PV panel's efficiency for this specific educational building.展开更多
With the rapid growth of the offshore wind industry, the innovative floating offshore wind turbine is chosen as the most feasible device to harvest the vast wind energy in deep water area. However there is no practica...With the rapid growth of the offshore wind industry, the innovative floating offshore wind turbine is chosen as the most feasible device to harvest the vast wind energy in deep water area. However there is no practical design guide for the floating wind turbine especially the floating foundation. In this paper, based on the investigation on the worldwide floating wind turbine and current available expertise on floating platforms accumulated in offshore O/G (oil and gas) industry, an integrated design methodology is presented according to the specialized characteristics of wind turbine, including the type selection of foundation and mooring system, design standard, design procedure, design conditions, key technologies involved. Finally a semi-submersible floating foundation is designed to support certain megawatt-rating wind turbine of Goldwind and also performance analysis and code checks are performed to validate the design. The design method of the floating foundation provided in this paper is proved feasible and can be adopted in practical engineering design.展开更多
文摘In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Institute of Nuclear Energy Safety Technology,was selected as the reference reactor for ADS development,as well as for the technology development of the Generation IV lead-cooled fast reactor.The conceptual design of CLEAR-I with 10 MW thermal power has been completed.KYLIN series lead-bismuth eutectic experimental loops have been constructed to investigate the technologies of the coolant,key components,structural materials,fuel assembly,operation,and control.In order to validate and test the key components and integrated operating technology of the lead-based reactor,the lead alloy-cooled non-nuclear reactor CLEAR-S,the lead-based zero-power nuclear reactor CLEAR-0,and the lead-based virtual reactor CLEAR-V are under realization.
基金Supported by the National Natural Science Foundation of China(NSFC Grants21176054 and 21271058)
文摘For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode materials on the conducting substrates greatly simplifies the electrode fabrication process without using any binders or conductive additives. Moreover, the well-ordered arrays closely connected to the current collectors can provide direct electron transport pathways and enhanced accommodation of strains arisen from lithium ion lithiation/delithiation. This article summarizes our recent work on design and construction of lithium-ion battery electrodes on metal substrates. An aqueous solution-based process and a microemulsion-mediated process have been respectively presented to control the kinetic and thermodynamic processes for the micro-/nanostructured array growth on metal substrates, with particular attention to CuO nanorod arrays and microcog arrays successfully prepared on Cu foil substrates. They can be directly used as binder-free electrodes to build advanced lithium-ion batteries with high energy, high safety and high stability.
文摘This study aims to illustrate the Japanese electricity supply system after the earthquake with consideration of Japanese uniqueness including its 10 separate grids with weak connections between them and the geographical gap between renewable potential and electricity consumptions using GIS data for a TIMES model. We take FIT (feed-in-tariff) as a policy measure to promote renewables. To consider policies to promote renewables, we need a modelling approach where the electricity system of the entire country is represented with extremely disaggregated information on existing stock and future potentials of renewables. By building up technology models based on detailed disaggregate information on existing stocks and future potentials of renewables at the sub-regional level, we can develop renewables-related policies which reflect more realistic conditions. According to the simulation results, high FIT prices do not guarantee more introductions of renewables. High FIT prices make the huge potential of renewables commercially viable, but at the same time, they limit the maximum introduction of renewables. In addition, a high FIT budget does not guarantee more renewable introduction.
文摘In the United States, university buildings use 17% of total non-residential building energy per year. According to the NREL (National Renewable Energy Laboratory), the average lifecycle of a building in a university is 42 years with an EUI (energy use intensity) of 23 kWh/m^2/y. Current building and energy codes limit the EUI to 16 kWh/m^2/y for new school buildings; this benchmark can vary depending on climate, occupancy, and other contextual factors. Although the LEED (leadership in energy and environmental design) system provides a set of guidelines to rate sustainable buildings, studies have shown that 28%-35% of the educational LEED-rated buildings use more energy than their conventional counterparts. This paper examines the issues specific to a LEED-rated design addition to an existing university building. The forum, a lecture hall expansion of to an existing building at the University of Kansas, has been proposed as environmentally friendly and energy-efficient building addition. Comfort and health aspects have been considered in the design in order to obtain LEED platinum certificate. The forum's energy performance strategies include a double-skin facade to reduce energy consumption and PV (photovoltaic) panels to generate onsite energy. This study considers various scenarios to meet NZEB (net-zero energy building) criteria and maximize energy savings. The feasibility of NZE criteria is evaluated for: (a) seasonal comparison; (b) facility occupancy; (c) PV panels' addition in relation to double skin facade. The results of NZEB approach are compared to LEED platinum requirements, based on Rol (return on investment) and PV panel's efficiency for this specific educational building.
文摘With the rapid growth of the offshore wind industry, the innovative floating offshore wind turbine is chosen as the most feasible device to harvest the vast wind energy in deep water area. However there is no practical design guide for the floating wind turbine especially the floating foundation. In this paper, based on the investigation on the worldwide floating wind turbine and current available expertise on floating platforms accumulated in offshore O/G (oil and gas) industry, an integrated design methodology is presented according to the specialized characteristics of wind turbine, including the type selection of foundation and mooring system, design standard, design procedure, design conditions, key technologies involved. Finally a semi-submersible floating foundation is designed to support certain megawatt-rating wind turbine of Goldwind and also performance analysis and code checks are performed to validate the design. The design method of the floating foundation provided in this paper is proved feasible and can be adopted in practical engineering design.