期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基-可数仿紧空间 被引量:4
1
作者 付传秀 周建新 《贵州大学学报(自然科学版)》 2007年第3期225-228,共4页
主要证明了如下结果:(1)X是基-仿紧空间当且仅当X是基-可数仿紧空间,并且X的每一开覆盖都存在满足X是基-可数仿紧空间的开基的元构成的σ-局部有限的开加细。(2)设X是正规空间,X是基-可数仿紧空间当且仅当存在X的一开基B,│B│=ω〔X〕... 主要证明了如下结果:(1)X是基-仿紧空间当且仅当X是基-可数仿紧空间,并且X的每一开覆盖都存在满足X是基-可数仿紧空间的开基的元构成的σ-局部有限的开加细。(2)设X是正规空间,X是基-可数仿紧空间当且仅当存在X的一开基B,│B│=ω〔X〕,使得X的每一可数开覆盖都存在由B中的元构成的局部有限的收缩。(3)基-可数仿紧空间在准完备映射下的逆象是基-可数仿紧空间。 展开更多
关键词 -仿空间 基-可数仿紧空间 局部有限
下载PDF
基-可数仿紧空间的刻画
2
作者 付传秀 周建新 《湖北民族学院学报(自然科学版)》 CAS 2007年第3期263-265,共3页
引入了基-可数仿紧空间的概念,给出基-可数仿紧空间的一些等价刻画,获得以下结果:(i)X是基-可数仿紧空间当且仅当存在X的一开基B,|B|=ω(X),对于X的每一可数开覆盖U={Ui}i∈N,都存在B′B,使得B′={Bi}i∈N是U的局部有限的可数开加细,... 引入了基-可数仿紧空间的概念,给出基-可数仿紧空间的一些等价刻画,获得以下结果:(i)X是基-可数仿紧空间当且仅当存在X的一开基B,|B|=ω(X),对于X的每一可数开覆盖U={Ui}i∈N,都存在B′B,使得B′={Bi}i∈N是U的局部有限的可数开加细,且BiUi;(ii)设X是正规空间,X是基-可数仿紧空间当且仅当存在的一开基B,|B|=ω(X),使得X的每一可数开覆盖都存在由B中的元构成的局部有限的收缩. 展开更多
关键词 -仿空间 基-可数仿紧空间 局部有限
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部