期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于改进堆叠自动编码机的垃圾邮件分类 被引量:7
1
作者 沈承恩 何军 邓扬 《计算机应用》 CSCD 北大核心 2016年第1期158-162,193,共6页
针对堆叠自动编码机(SA)容易产生过拟合而降低垃圾邮件分类精度的问题,提出了一种基于动态dropout的改进堆叠自动编码机方法。首先分析了垃圾邮件分类问题的特殊性,将dropout算法引入到堆叠自动编码机算法中;同时,根据传统dropout算... 针对堆叠自动编码机(SA)容易产生过拟合而降低垃圾邮件分类精度的问题,提出了一种基于动态dropout的改进堆叠自动编码机方法。首先分析了垃圾邮件分类问题的特殊性,将dropout算法引入到堆叠自动编码机算法中;同时,根据传统dropout算法容易使部分节点长期处于熄火状态的缺陷,提出了一种动态dropout改进算法,使用动态函数将传统静态熄火率修改为随着迭代次数逐渐减小的动态熄火率;最后,利用动态dropout算法改进堆叠自动编码机的预训练模型。仿真结果表明,相比支持向量机(SVM)和反向传播(BP)神经网络,改进的堆叠自动编码机平均准确率达到了97.66%,各个数据集上马修斯系数都大于89%;与传统堆叠自动编码机相比,改进的堆叠自动编码机的马修斯系数在Error1-6数据集上分别提高了3.27%、1.68%、2.16%、1.51%、1.58%、1.07%。实验结果表明,基于动态dropout算法的改进堆叠自动编码机具有更高的分类精度和更好的稳定性。 展开更多
关键词 深度学习 堆叠自动编码 DROPOUT 支持向量机 垃圾邮件 分类
下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:6
2
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
下载PDF
基于自动编码的机器人英语语音自动识别方法 被引量:5
3
作者 高振凤 《自动化技术与应用》 2021年第7期96-100,160,共6页
针对自动编码模块结构单一,准确率与噪音免疫性能较差的问题,基于自动编码技术设计一种机器人英语语音自动识别方法。通过堆叠多个无监督网络的自动编码,架构出适用于语音自动识别的自编码网络,将音素向量作为英语语音特征提取辅助信息... 针对自动编码模块结构单一,准确率与噪音免疫性能较差的问题,基于自动编码技术设计一种机器人英语语音自动识别方法。通过堆叠多个无监督网络的自动编码,架构出适用于语音自动识别的自编码网络,将音素向量作为英语语音特征提取辅助信息,将全差异因子作为网络隐含变量,进行特征向量补偿;应用一阶FIR(Finite Impulse Response,非递归型滤波器)数字高通滤波器进行预加重处理,随机置零处理输入的语音特征参数,经过逐层训练实现英语语音自动识别。实验结果表明,本文方法对单词、句子都具有一定的有效性,识别准确率较高,且噪声免疫性能较强。 展开更多
关键词 堆叠自动编码网络 机器人 英语语音 自动识别 噪声免疫性能
下载PDF
基于深度堆叠卷积神经网络的图像融合 被引量:35
4
作者 蔺素珍 韩泽 《计算机学报》 EI CSCD 北大核心 2017年第11期2506-2518,共13页
该文针对多尺度变换融合图像中普遍存在的需要依据先验知识选取滤波器,导致融合效果存在不确定性的问题,提出了基于深度堆叠卷积神经网络的融合方法.首先,分别以高斯拉普拉斯滤波器和高斯滤波器为首层网络的初始卷积核,将源图像分解为... 该文针对多尺度变换融合图像中普遍存在的需要依据先验知识选取滤波器,导致融合效果存在不确定性的问题,提出了基于深度堆叠卷积神经网络的融合方法.首先,分别以高斯拉普拉斯滤波器和高斯滤波器为首层网络的初始卷积核,将源图像分解为高频和低频图像序列;其次,基于He K方法初始化其余层卷积核,获得与源图像尺寸相同的高频和低频重构图像各一幅,并将二者合成源图像的近似图像;再以源图像和近似图像像素值之差的平方和的均值为误差函数,进行反向传播训练形成基本神经单元;之后,将多个基本单元堆叠起来利用end-to-end的方式调整整个网络得到深度堆叠神经网络.然后,利用该堆叠网络分别分解测试图像对,得到各自的高频和低频图像,再基于局部方差取大和区域匹配度合并的规则分别融合高频和低频图像,并将高频融合图像和低频融合图像放回最后一层网络,得到最终的融合图像.实验结果表明:与基于双树复小波变换(Dual-Tree Complex Wavelet Transform,DTCWT)、非下采样轮廓波变换(Non-Subsampled Contourlet Transform,NSCT)和非下采样剪切波变换(Non-Subsampled Shearlet Transform,NSST)的融合结果相比,用高斯拉普拉斯滤波器和高斯滤波器初始化的深度堆叠卷积神经网络融合效果主观效果好,客观指标最优个数为NSCT的3.3倍,运行时间为NSCT的30.3%和NSST的11.6%. 展开更多
关键词 图像融合 深度学习 卷积神经网络 堆叠自动编码 滤波器
下载PDF
基于深度学习的Wi-Fi与iBeacon融合的室内定位方法 被引量:12
5
作者 薛伟 陈璟 张熠 《计算机工程与应用》 CSCD 北大核心 2019年第1期29-34,46,共7页
针对传统室内定位指纹法存在定位精度低、容易受到环境影响的问题,提出了一种基于深度学习的Wi-Fi与iBeacon融合的室内定位方法。离线阶段在参考点处采集各个AP和iBeacon的信号强度,使用这些信号强度数据对堆叠自动编码机进行训练并从... 针对传统室内定位指纹法存在定位精度低、容易受到环境影响的问题,提出了一种基于深度学习的Wi-Fi与iBeacon融合的室内定位方法。离线阶段在参考点处采集各个AP和iBeacon的信号强度,使用这些信号强度数据对堆叠自动编码机进行训练并从大量带有噪声的信号强度样本中提取特征,构建位置指纹数据库;在线定位阶段,使用堆叠自动编码机获得待测点信号强度特征并与位置指纹数据库中信号强度特征进行匹配,通过近邻算法估计待测点位置。实验结果表明,基于堆叠自动编码机的室内定位算法具有更高的定位精度。 展开更多
关键词 室内定位 深度学习 堆叠自动编码 近邻算法 iBeacon WI-FI
下载PDF
PCA-SAE的齿轮箱故障诊断方法研究 被引量:7
6
作者 马芸婷 张超 王宇晨 《机械设计与制造》 北大核心 2022年第3期144-147,152,共5页
针对因长时间的信号采集使得振动信号面临数据量大的问题。传统的信号分析方法,已无法解决大数据情况下故障的特征提取与分类,同时采集到的数据样本具有多维度多样本的情况,导致训练网络时在前期导入数据阶段耗费大量时间与硬件的内存,... 针对因长时间的信号采集使得振动信号面临数据量大的问题。传统的信号分析方法,已无法解决大数据情况下故障的特征提取与分类,同时采集到的数据样本具有多维度多样本的情况,导致训练网络时在前期导入数据阶段耗费大量时间与硬件的内存,并且会导致网络训练中产生过拟合现象,影响分类准确率。针对以上问题本文提出基于主成分分析与堆叠自动编码机相结合的齿轮故障诊断研究,以实现对齿轮振动信号快速准确的特征提取与分类。首先对原始信号进行主成分析,得到各主成分贡献率,其次,选取主成分贡献率高的前几列作为深度学习网络输入样本。最后深度学习网络即堆叠自动编码机网络对训练数据集进行学习提取数据中的特征并应用测试数据集部分进行分类并计算分类的准确率。最终,实验中将所提深度学习方法与传统的特征提取方法和分类方法进行比较最终识别精度进行比较。实验结果表明本文所提方法最终可以达到98.6%的准确率,实现端到端的故障诊断方法,可以很好的应用于故障诊断领域。 展开更多
关键词 故障诊断 主成成分分析 深度学习 堆叠自动编码机网络
下载PDF
一种基于两阶段深度学习的集成推荐模型 被引量:12
7
作者 王瑞琴 吴宗大 +1 位作者 蒋云良 楼俊钢 《计算机研究与发展》 EI CSCD 北大核心 2019年第8期1661-1669,共9页
近年来,深度学习技术被广泛应用于推荐系统领域并获得了很大的成功,然而深度学习模型的输入质量对学习结果具有很大影响,稀疏的输入特征向量不仅会增加后续模型训练的难度,而且容易导致学习结果落入局部最优.提出一个基于两阶段深度学... 近年来,深度学习技术被广泛应用于推荐系统领域并获得了很大的成功,然而深度学习模型的输入质量对学习结果具有很大影响,稀疏的输入特征向量不仅会增加后续模型训练的难度,而且容易导致学习结果落入局部最优.提出一个基于两阶段深度学习的集成推荐模型:首先,利用具有封闭式参数计算能力的边缘化堆叠去噪自动编码机进行用户和项目高层抽象特征的提取;然后,将得到的用户抽象特征和项目抽象特征进行连接并作为深度神经网络模型的输入向量,通过联合训练的方式进行参数学习和模型优化.此外,为了对低阶特征交互进行建模,推荐模型中还集成了基于原始特征向量的逻辑回归模型.在通用数据集上的大量对比实验研究表明:与当前流行的深度学习推荐方法相比,该方法在推荐精度和召回率方面都有所改善,甚至是在数据稀疏和冷启动的环境下. 展开更多
关键词 深度学习 边缘化去噪自动编码 深度神经网络 特征提取
下载PDF
基于ELMD能量熵与PSO-SAE的齿轮故障诊断研究 被引量:2
8
作者 马芸婷 郭晓苏 +1 位作者 张彪 段皓然 《内燃机与配件》 2019年第7期34-36,共3页
齿轮发生不同的故障会导致不同频带内的信号能量值发生改变,因此可通过计算不同振动信号的能量熵判断齿轮是否发生故障,而针对复杂多变的工况和噪声的干扰而导致的齿轮振动信号的非线性、非平稳性且由于数据量大等问题。传统的信号分析... 齿轮发生不同的故障会导致不同频带内的信号能量值发生改变,因此可通过计算不同振动信号的能量熵判断齿轮是否发生故障,而针对复杂多变的工况和噪声的干扰而导致的齿轮振动信号的非线性、非平稳性且由于数据量大等问题。传统的信号分析方法,已无法表征丰富,海量的信号信息与复杂的多元非线性信号关系。故本文提出基于ELMD能量熵与PSO-SAE的齿轮故障诊断研究。该研究首先对原始信号进行ELMD分解,得到若干个乘积函数(PF);其次,对ELMD分解结果的前7个PF进行求取能量熵作为特征样本。最后进入一个经粒子群优化后的深度学习网络即堆叠自动编码机网络(PSO-SAE)对特征样本分类。实验中,将PSO-SAE与两类常用支持向量机分别进行识别精度与运行时间的对比。实验结果证明,所提研究方案可很好地应用在齿轮故障诊断研究中。 展开更多
关键词 ELMD 能量熵 深度学习 堆叠自动编码 粒子群优化 故障诊断
下载PDF
Gait recognition based on Wasserstein generating adversarial image inpainting network 被引量:4
9
作者 XIA Li-min WANG Hao GUO Wei-ting 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2759-2770,共12页
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a... Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition. 展开更多
关键词 gait recognition image inpainting generating adversarial network stacking automatic encoder
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部