期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于堆栈稀疏降噪自编码的电压暂降源识别方法 被引量:6
1
作者 于小青 马素霞 郑智聪 《电力信息与通信技术》 2018年第11期47-52,共6页
为有效识别电压暂降源,文章提出一种基于堆栈稀疏降噪自编码的电压暂降源识别方法,用于识别单一和复合电压暂降源。稀疏降噪自编码网络是在自编码网络的基础上加入稀疏性限制,同时在输入信号中加入按一定概率分布的噪声构成的深度神经网... 为有效识别电压暂降源,文章提出一种基于堆栈稀疏降噪自编码的电压暂降源识别方法,用于识别单一和复合电压暂降源。稀疏降噪自编码网络是在自编码网络的基础上加入稀疏性限制,同时在输入信号中加入按一定概率分布的噪声构成的深度神经网络,将其逐层堆砌形成堆栈稀疏降噪自编码网络。实验首先利用无标签训练集初始化网络中的权重和偏置项,再利用有标签训练集进行一次有监督的微调,使网络能够学习输入信号中更深层次的特征,最后采用SoftMax函数对特征进行分类。结果证明,该方法对电压暂降源的识别率高,同时,基于实测数据增量训练下的模型将具有更好的泛化能力,能够很好地应用于实际工程项目中。 展开更多
关键词 电压暂 深度神经网络 堆栈稀疏降噪自编码 多标签分类
下载PDF
自编码网络在JavaScript恶意代码检测中的应用研究 被引量:4
2
作者 龙廷艳 万良 丁红卫 《计算机科学与探索》 CSCD 北大核心 2019年第12期2073-2084,共12页
针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法。首先将JavaScript恶意代码进行数值化处理,然后在自编码网络的基础上加入稀疏... 针对传统机器学习特征提取方法很难发掘JavaScript恶意代码深层次本质特征的问题,提出基于堆栈式稀疏降噪自编码网络(sSDAN)的JavaScript恶意代码检测方法。首先将JavaScript恶意代码进行数值化处理,然后在自编码网络的基础上加入稀疏性限制,同时加入一定概率分布的噪声进行染噪的学习训练,使得自动编码器模型能够获取数据不同层次的特征表达;再经过无监督逐层贪婪的预训练和有监督的微调过程可以得到有效去噪后的更深层次特征;最后利用Softmax函数对特征进行分类。实验结果表明,稀疏降噪自编码分类算法对JavaScript具有较好的分类能力,其准确率高于传统机器学习模型,相比随机森林的方法提高了0.717%,相比支持向量机(SVM)的方法提高了2.237%。 展开更多
关键词 堆栈稀疏自编码网络(sSDAN) JavaScript恶意代码 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部