For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital ...For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.展开更多
The glass forming ability, thermal and mechanical properties of some Zr Cu Al Ni bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fra...The glass forming ability, thermal and mechanical properties of some Zr Cu Al Ni bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fragility index models. Cylindrical and conical ingots were produced by copper mould suction-casting under Ar atmosphere. The conical ingots were characterized by means of X-ray diffraction in order to determine the glassy structure. It was found that both alloys have a critical glassy diameter, Dc, of 3 mm. Thermal behaviours were investigated by differential scanning calorimetry at heating rates of 0.5, 0.67 and 0.83 K/s. The gamma parameter γ, supercooled liquid region ΔTx, and reduced glass transition temperature Trg, of the experimentally obtained glasses indicated high glass forming ability. The glassy compositions showed a fragility index of ~40 GPa. The compression test of the investigated alloys was carried out at a strain rate of 0.016 s^-1, obtaining a elastic modulus of ~83 GPa, total deformation of ~5%, yield strength of 1.6 GPa and hardness of 4 GPa. It was concluded that the use of the dense packing and kinetic fragility index models helped to predict glass-forming compositions in the family alloy investigated.展开更多
The dispersion, stabilization and rheological properties of the slurry with various relative molecular masses of PVB were studied. The sintering properties, microstructure and dielectric properties of borosilicate gla...The dispersion, stabilization and rheological properties of the slurry with various relative molecular masses of PVB were studied. The sintering properties, microstructure and dielectric properties of borosilicate glass/Al203 composites were also investigated. The intensities of the typical vibrating bands decrease with the decrease of the relative molecular mass of PVB, which demonstrates that the content of butyral groups in PVB binders decreases correspondingly, leading to a rapid decrease in the viscosity of the mixed slurry. The solid content of samples increases with the decrease of the relative molecular mass of PVB, and this further leads to the increase of tape thickness, bulk density and dried-shrinkage coefficient of tapes. The bulk density, relative density, three-point strength and dielectric constant of sintered samples increase with the increase of the solid content, and the shrinkage and dielectric loss decrease. By contrast, samples for PVB-5s exhibit better properties of a bulk density of 3.10 g/cm3, a relative density of 98.1%, a three-point strength of 208 MPa, aεt value of 8.01, a tanδ value of 7.6× 10^-4 at 10 MHz and a well matching with Ag electrodes.展开更多
Packed anode of microbial fuel cells(MFCs),commonly with a dense structure, suffers from the clogging,resulting in unsatisfied long-term stability of MFCs. Herein,we fabricate a biochar-based packed anode with a loose...Packed anode of microbial fuel cells(MFCs),commonly with a dense structure, suffers from the clogging,resulting in unsatisfied long-term stability of MFCs. Herein,we fabricate a biochar-based packed anode with a loose structure to enhance the long-term performance of MFCs equipped with packed anodes. The biochar, derived from cocklebur fruit, endows the packed anode with a loose structure but excellent conductivity. Once incorporated into MFCs, the biochar-based packed anode can yield comparable performance to benchmark materials. Particularly, the biochar-based MFCs present no obvious decrease of the power output during 150 days’ operation, which is attributed to the clogging-resistant effect induced by the loose structure of biochar-based anode. The cocklebur fruit-derived biochar can be a promising candidate for MFC anodes, and should facilitate both scaling-up and practical applications of MFCs.展开更多
基金Projects(51309089,11202063)supported by the National Natural Science Foundation of ChinaProject(2013BAB06B01)supported by the National High Technology Research and Development Program of China+1 种基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProject(BK20130846)supported by Natural Science Foundation of Jiangsu Province,China
文摘For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.
基金the financial support from UNAM-DGAPA-PAPIIT thorough the project 101016CONACYT for the 232312 Ph D scholarship grant
文摘The glass forming ability, thermal and mechanical properties of some Zr Cu Al Ni bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fragility index models. Cylindrical and conical ingots were produced by copper mould suction-casting under Ar atmosphere. The conical ingots were characterized by means of X-ray diffraction in order to determine the glassy structure. It was found that both alloys have a critical glassy diameter, Dc, of 3 mm. Thermal behaviours were investigated by differential scanning calorimetry at heating rates of 0.5, 0.67 and 0.83 K/s. The gamma parameter γ, supercooled liquid region ΔTx, and reduced glass transition temperature Trg, of the experimentally obtained glasses indicated high glass forming ability. The glassy compositions showed a fragility index of ~40 GPa. The compression test of the investigated alloys was carried out at a strain rate of 0.016 s^-1, obtaining a elastic modulus of ~83 GPa, total deformation of ~5%, yield strength of 1.6 GPa and hardness of 4 GPa. It was concluded that the use of the dense packing and kinetic fragility index models helped to predict glass-forming compositions in the family alloy investigated.
基金Project(2007AA03Z455) supported by the National High Technology Research and Development Program of ChinaProjects(BE2009168)supported by Science&Technology Pillar Program of Jiangsu Province, China+2 种基金Project supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, ChinaProject(CXZZ12_0415) supported by the Innovation Foundation for Graduate Students of Jiangsu Province, ChinaProject(IRT1146) supported for Changjiang Scholars and Innovative Research Teamin University (PCSIRT) of China
文摘The dispersion, stabilization and rheological properties of the slurry with various relative molecular masses of PVB were studied. The sintering properties, microstructure and dielectric properties of borosilicate glass/Al203 composites were also investigated. The intensities of the typical vibrating bands decrease with the decrease of the relative molecular mass of PVB, which demonstrates that the content of butyral groups in PVB binders decreases correspondingly, leading to a rapid decrease in the viscosity of the mixed slurry. The solid content of samples increases with the decrease of the relative molecular mass of PVB, and this further leads to the increase of tape thickness, bulk density and dried-shrinkage coefficient of tapes. The bulk density, relative density, three-point strength and dielectric constant of sintered samples increase with the increase of the solid content, and the shrinkage and dielectric loss decrease. By contrast, samples for PVB-5s exhibit better properties of a bulk density of 3.10 g/cm3, a relative density of 98.1%, a three-point strength of 208 MPa, aεt value of 8.01, a tanδ value of 7.6× 10^-4 at 10 MHz and a well matching with Ag electrodes.
基金supported by the National Key R&D Program of China (2017YFA0207201)the National Natural Science Foundation of China (21507059)+3 种基金the Natural Science Foundation of Jiangsu Province (BK20150948)Six Talent Peaks Project in Jiangsu Province (JNHB-038)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of EducationYoung Elite Scientists Sponsorship Program by CAST (2017QNRC001)
文摘Packed anode of microbial fuel cells(MFCs),commonly with a dense structure, suffers from the clogging,resulting in unsatisfied long-term stability of MFCs. Herein,we fabricate a biochar-based packed anode with a loose structure to enhance the long-term performance of MFCs equipped with packed anodes. The biochar, derived from cocklebur fruit, endows the packed anode with a loose structure but excellent conductivity. Once incorporated into MFCs, the biochar-based packed anode can yield comparable performance to benchmark materials. Particularly, the biochar-based MFCs present no obvious decrease of the power output during 150 days’ operation, which is attributed to the clogging-resistant effect induced by the loose structure of biochar-based anode. The cocklebur fruit-derived biochar can be a promising candidate for MFC anodes, and should facilitate both scaling-up and practical applications of MFCs.