The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufac...The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufactured by RHCM method. The corresponding rapid heat response mould with an innovational conformal heating/cooling channel system and a dynamic mould temperature control system based on the Jll-W-160 type precise temperature controller was proposed. During heating/cooling process, the mould was able to be heated from room temperature to 160 ~C in 6 s and then cooled to 80 ~C in 22 s. The effects of processing conditions in RHCM on part warpage were investigated based on the single factor experimental method and Taguchi theory. Results reveal that the elevated mould temperature reduces unwanted freezing during the injection stage, thus improving mouldability and enhancing part quality, whereas the overheated of mould temperature will lead to defective product. The feasible mould temperature scope in RHCM should be no higher than 140 ~C, and the efficient mould temperature scope should be around the polymer heat distortion temperature. Melt temperature as well as injection pressure effects on warpage can be divided into two stages The lower stage gives a no explicit effect on warpage whereas the higher stage leads to a quasi-linear downtrend. But others affect the warpage as a V-type fluctuation, reaching to the minimum around the heat distortion temperature. Under the same mould temperature condition, the effects of process parameters on warpage decrease according to the following order, packing time, packing pressure, melt temperature, injection pressure and cooling time, respectively.展开更多
For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the war...For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.展开更多
基金Project(20122BAB206014)supported by National Natural Science Foundation of ChinaProject(51365038)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ13068)supported by the Science and Technology Program of Educational Committee of Jiangxi Province,China
文摘The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufactured by RHCM method. The corresponding rapid heat response mould with an innovational conformal heating/cooling channel system and a dynamic mould temperature control system based on the Jll-W-160 type precise temperature controller was proposed. During heating/cooling process, the mould was able to be heated from room temperature to 160 ~C in 6 s and then cooled to 80 ~C in 22 s. The effects of processing conditions in RHCM on part warpage were investigated based on the single factor experimental method and Taguchi theory. Results reveal that the elevated mould temperature reduces unwanted freezing during the injection stage, thus improving mouldability and enhancing part quality, whereas the overheated of mould temperature will lead to defective product. The feasible mould temperature scope in RHCM should be no higher than 140 ~C, and the efficient mould temperature scope should be around the polymer heat distortion temperature. Melt temperature as well as injection pressure effects on warpage can be divided into two stages The lower stage gives a no explicit effect on warpage whereas the higher stage leads to a quasi-linear downtrend. But others affect the warpage as a V-type fluctuation, reaching to the minimum around the heat distortion temperature. Under the same mould temperature condition, the effects of process parameters on warpage decrease according to the following order, packing time, packing pressure, melt temperature, injection pressure and cooling time, respectively.
基金Supported by the Key Program of National Natural Science Foundation of China(11432003)the Key Research Project for Henan Universities(15A430009)
文摘For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.