Anchoring mechanism and failure characteristics of composite soft rock with weak interface usually exhibit remarkable difference from those in single rock mass.In order to fully understand the reinforcement mechanism ...Anchoring mechanism and failure characteristics of composite soft rock with weak interface usually exhibit remarkable difference from those in single rock mass.In order to fully understand the reinforcement mechanism of composite soft roof in western mining area of China,a mechanical model of composite soft rock with weak interface and rock bolt which considering the transverse shear sliding between different rock layers was established firstly.The anchoring effect was quantified by a factor defined as anchoring effect coefficient and its evolution equation was further deduced based on the deformation relationship and homogenized distribution assumption of stress acting on composite structure.Meanwhile,the numerical simulation model of composite soft rock with shear joint was prompted by finite element method.Then detailed analysis were carried out for the deformation features,stress distribution and failure behavior of rock mass and rock bolt near the joint under transverse load.The theoretical result indicates that the anchoring effect of rock-bolt through weak joint changes with the working status of rock mass and closely relates with the physical and geometric parameters of rock mass and rock bolt.From the numerical results,the bending deformation of rock bolt accurately characterized by Doseresp model is mainly concentrated between two plastic hinges near the shear joint.The maximum tensile and compression stresses distribute in the plastic hinge.However,the maximum shear stress appears at the positions of joint surface.The failure zones of composite rock are produced firstly at the joint surface due to the reaction of rock bolt.The above results laid a theoretical and computational foundation for further study of anchorage failure in composite soft rock.展开更多
Based on the cylindrical cavity expansion theory, a plastic-damage-elastic model is proposed for the penetration problem of geo-material. In the model, the unified strength criterion (Yu, 1991) is adopted as the failu...Based on the cylindrical cavity expansion theory, a plastic-damage-elastic model is proposed for the penetration problem of geo-material. In the model, the unified strength criterion (Yu, 1991) is adopted as the failure criterion. The distributions of the radial stress and velocity are analyzed. According to the Newton's second law, a series results of the final penetration depth and the impedance load are obtained to different parameter b, when a rigid projectile normally impacts and penetrates a semi-infinite geo-material target with an impact velocity of 300-1200 m/s. By comparing with the test data available, it appears that the method can be used in analyzing the final depth and the impedance load of a rigid projectile penetrating into a semi-infinite target with different impact velocities.展开更多
The paper investigates theoretically the optimization of the doped ablator layers for the plastic ignition capsule. The high-resolved one-dimensional implosion simulations show that the inner pure CFI layer of the Si-...The paper investigates theoretically the optimization of the doped ablator layers for the plastic ignition capsule. The high-resolved one-dimensional implosion simulations show that the inner pure CFI layer of the Si-doped design is excessively preheated by the hard x-ray, leading to the unstable ablator-fuel interface compared to the Ge-doped capsule. This is because that the Si K-shell absorption edge (1.8 keV) is higher than the Ge L-edge (1.3 keV), and Si dopant makes more hard x-ray penetrate through the doped ablator layers to preheat the inner pure CH layer. So an optimization of the doped ablator layers (called "Si/Ge capsule") is performed: an Si-doped CH layer is placed next to the outer pure CH layer to keep the high implosion velocity; next to the Si-doped layer is a thin Ge-doped layer, in order to absorb the hard x-ray and protect the inner undoped CH-layer from excessively preheating. The simulations show that the Si/Ge capsule can effectively improve hydrodynamic stability at the ablator-fuel interface while keeping the high implosion velocity.展开更多
In terms of the classical theory in textbooks, the two components with phase separation in a binary polymer blend will, depending on their compatibility, have their respective Tg get closer or remain in their original...In terms of the classical theory in textbooks, the two components with phase separation in a binary polymer blend will, depending on their compatibility, have their respective Tg get closer or remain in their original values. According to the classical theory, the Tg of plastic component shall remain unchanged or move toward the lower Tg of rubber component in a rubber/plastic blend. However, ultra-fine full-vulcanized powdered rubber (UFPR) with a diameter of ca. 100 nm can simultaneously increase the toughness and the Tg of plastics, which is abnormal and is difficult to explain by classical theory. In this feature article, the abnormal behavior and its mechanism are discussed in detail.展开更多
基金Projects(51774196,41472280,51578327)supported by the National Natural Science Foundation of ChinaProject(2016M592221)supported by the China Postdoctoral Science FoundationProject(BJRC20160501)supported by the SDUST Young Teachers Teaching Talent Training Plan,China
文摘Anchoring mechanism and failure characteristics of composite soft rock with weak interface usually exhibit remarkable difference from those in single rock mass.In order to fully understand the reinforcement mechanism of composite soft roof in western mining area of China,a mechanical model of composite soft rock with weak interface and rock bolt which considering the transverse shear sliding between different rock layers was established firstly.The anchoring effect was quantified by a factor defined as anchoring effect coefficient and its evolution equation was further deduced based on the deformation relationship and homogenized distribution assumption of stress acting on composite structure.Meanwhile,the numerical simulation model of composite soft rock with shear joint was prompted by finite element method.Then detailed analysis were carried out for the deformation features,stress distribution and failure behavior of rock mass and rock bolt near the joint under transverse load.The theoretical result indicates that the anchoring effect of rock-bolt through weak joint changes with the working status of rock mass and closely relates with the physical and geometric parameters of rock mass and rock bolt.From the numerical results,the bending deformation of rock bolt accurately characterized by Doseresp model is mainly concentrated between two plastic hinges near the shear joint.The maximum tensile and compression stresses distribute in the plastic hinge.However,the maximum shear stress appears at the positions of joint surface.The failure zones of composite rock are produced firstly at the joint surface due to the reaction of rock bolt.The above results laid a theoretical and computational foundation for further study of anchorage failure in composite soft rock.
文摘Based on the cylindrical cavity expansion theory, a plastic-damage-elastic model is proposed for the penetration problem of geo-material. In the model, the unified strength criterion (Yu, 1991) is adopted as the failure criterion. The distributions of the radial stress and velocity are analyzed. According to the Newton's second law, a series results of the final penetration depth and the impedance load are obtained to different parameter b, when a rigid projectile normally impacts and penetrates a semi-infinite geo-material target with an impact velocity of 300-1200 m/s. By comparing with the test data available, it appears that the method can be used in analyzing the final depth and the impedance load of a rigid projectile penetrating into a semi-infinite target with different impact velocities.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11105013,11205017,and 11371065the National High-Tech R&D Program(863 Program) through Grant No.2012AA01A303
文摘The paper investigates theoretically the optimization of the doped ablator layers for the plastic ignition capsule. The high-resolved one-dimensional implosion simulations show that the inner pure CFI layer of the Si-doped design is excessively preheated by the hard x-ray, leading to the unstable ablator-fuel interface compared to the Ge-doped capsule. This is because that the Si K-shell absorption edge (1.8 keV) is higher than the Ge L-edge (1.3 keV), and Si dopant makes more hard x-ray penetrate through the doped ablator layers to preheat the inner pure CH layer. So an optimization of the doped ablator layers (called "Si/Ge capsule") is performed: an Si-doped CH layer is placed next to the outer pure CH layer to keep the high implosion velocity; next to the Si-doped layer is a thin Ge-doped layer, in order to absorb the hard x-ray and protect the inner undoped CH-layer from excessively preheating. The simulations show that the Si/Ge capsule can effectively improve hydrodynamic stability at the ablator-fuel interface while keeping the high implosion velocity.
文摘In terms of the classical theory in textbooks, the two components with phase separation in a binary polymer blend will, depending on their compatibility, have their respective Tg get closer or remain in their original values. According to the classical theory, the Tg of plastic component shall remain unchanged or move toward the lower Tg of rubber component in a rubber/plastic blend. However, ultra-fine full-vulcanized powdered rubber (UFPR) with a diameter of ca. 100 nm can simultaneously increase the toughness and the Tg of plastics, which is abnormal and is difficult to explain by classical theory. In this feature article, the abnormal behavior and its mechanism are discussed in detail.