The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (inclu...The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wave-crest belts. “Fast-waves" propagated with velocities of orders of magnitude of 100~102km/a have been verified by wave-controlled earthquake migration, showing the “decade waves" and “century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the belt-like distribution of strong earthquakes with M S≥7.0, it is indicated further in this paper that the “slow-waves" with velocities of orders of magnitude of 100~101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with M S≥7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accumulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81~2.80 m/a and periods of 0.16~0.55 Ma. The wave-generating time at the Himalayan driving boundary is about 1.34~4.59 Ma before present for the “slow-waves", corresponding to the stage from the Mid Pliocene to the Mid Early-Pleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of the wave-controlled belts of strong earthquakes that two optimal patterns of wave-crest belts originated simultaneously from the eastern and western segments of the Himalayan arc, respectively. The overlap of wave-crest belts of these two systems is responsible for the relative concentration of energy and forms the seismic-energy-background zones for strong earthquakes with M S≥7.0.展开更多
文摘The results inferred from experiments with analogue models carried out previously have shown that two types of plastic-flow waves, “fast-waves" and “slow-waves", are induced in the lower lithosphere (including the lower crust and lithospheric mantle) under driving at plate boundaries and both of them are viscous gravity waves formed by the superposition of major and subsidiary waves. The major waves are similar to solitary waves and the subsidiary waves are traveling waves. The plastic-flow waves in the lower lithosphere control seismic activities in the overlying seismogenic layer and result in the distribution of earthquakes along the wave-crest belts. “Fast-waves" propagated with velocities of orders of magnitude of 100~102km/a have been verified by wave-controlled earthquake migration, showing the “decade waves" and “century waves" with the average periods of 10.8 and 93.4 a, respectively, which originate from the Himalayan driving boundary. According to the recognition of the patterns of the belt-like distribution of strong earthquakes with M S≥7.0, it is indicated further in this paper that the “slow-waves" with velocities of orders of magnitude of 100~101 m/a also originated under compression from the Himalayan driving boundary. Strong earthquakes with M S≥7.0 are controlled mainly by subsidiary waves, because the major waves with a duration of up to 106 a for each disturbance cannot result in the accumulation of enough energy for strong earthquakes due to the relaxation of the upper crust. The subsidiary waves propagate with an average wave length of 445 km, velocities of 0.81~2.80 m/a and periods of 0.16~0.55 Ma. The wave-generating time at the Himalayan driving boundary is about 1.34~4.59 Ma before present for the “slow-waves", corresponding to the stage from the Mid Pliocene to the Mid Early-Pleistocene and being identical with one of the major tectonic episodes of the Himalayan tectonic movement. It is shown from the recognition of the wave-controlled belts of strong earthquakes that two optimal patterns of wave-crest belts originated simultaneously from the eastern and western segments of the Himalayan arc, respectively. The overlap of wave-crest belts of these two systems is responsible for the relative concentration of energy and forms the seismic-energy-background zones for strong earthquakes with M S≥7.0.