In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plasti...In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plastic welding machine. At first, relations between amplitude of vibration and frequency as well as main loop current and amplitude of vibration were analyzed. From this analysis, we deduced that frequency tracking process of the vibration system can be concluded as an optimizing problem of one dimensional fluctuant extremum of main loop current in vibration system. Then a method of self-optimizing fuzzy control, used for the realization of automatic frequency tracking in vibration system, is presented on the basis of serf-optimizing adaptive control approach and fuzzy control approach. The result of experiments shows that the fuzzy self-optimizing method can solve the problem of tracking frequency drift very well. Response time of tracking in the system is less than 50 ms, which basically meets the requirements of frequency tracking in ultrasonic plastic welding machine.展开更多
A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature ...A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature control device, temperature sensors, heating cables, fireproofing plastic pipes (PVC), 108 heavy-duty plastic containers and seedlings. The heating cables were held in six 2-layer PVC frames with 25 cm wide, 320 cm long and 25 cm high and three 1-layer frames with 25 cm wide and 320 cm long for 15°C soil temperature treatment, half of the 2-layer frames were used for 20°C and 25°C soil temperature treatments, respectively. Each of the frames was installed at each of ditches with 30 cm wide, 330 cm long and 30 cm deep in size. 12 seedling containers with 20 cm top diameter, 18cm bottom diameter and 25 cm high were homogenously placed at each of the ditches, and spaces between the containers were filled with natural soil. The system was economic, and could increase soil temperatures obviously and uniformly, the maximal and minimal standard errors of soil temperatures were ±0.28 and ±0.05°C at 10cm depth in the containers within each of all the ditches. In the system, aboveground environment was natural, diurnal and monthly soil temperatures varied with changing air temperature, the research results may be better to know the eco-physiological and growth responses of alpine saplings/seedlings to soil warming than that in greenhouse, laboratory, infrared heat lamp and open top chamber.展开更多
基金Sponsored by the Natural Science Foundation of Shanghai Education Committee(Grant No.05LZ13)Shanghai Leading Academic Discipline Project(Grant No. P1303)Shanghai Elitist Project(Grant No.04YQHB126)
文摘In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plastic welding machine. At first, relations between amplitude of vibration and frequency as well as main loop current and amplitude of vibration were analyzed. From this analysis, we deduced that frequency tracking process of the vibration system can be concluded as an optimizing problem of one dimensional fluctuant extremum of main loop current in vibration system. Then a method of self-optimizing fuzzy control, used for the realization of automatic frequency tracking in vibration system, is presented on the basis of serf-optimizing adaptive control approach and fuzzy control approach. The result of experiments shows that the fuzzy self-optimizing method can solve the problem of tracking frequency drift very well. Response time of tracking in the system is less than 50 ms, which basically meets the requirements of frequency tracking in ultrasonic plastic welding machine.
基金supported by the National Natural Science Foundation of China (Grant No. 30872000 and 41071203)partially supported by the Project of Knowledge Innovation, Chinese Academy of Sciences (No. KZXZ-YW-33)Sichuan Foundation of Excellent Young Scientists (No. 2010JQ0026)
文摘A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature control device, temperature sensors, heating cables, fireproofing plastic pipes (PVC), 108 heavy-duty plastic containers and seedlings. The heating cables were held in six 2-layer PVC frames with 25 cm wide, 320 cm long and 25 cm high and three 1-layer frames with 25 cm wide and 320 cm long for 15°C soil temperature treatment, half of the 2-layer frames were used for 20°C and 25°C soil temperature treatments, respectively. Each of the frames was installed at each of ditches with 30 cm wide, 330 cm long and 30 cm deep in size. 12 seedling containers with 20 cm top diameter, 18cm bottom diameter and 25 cm high were homogenously placed at each of the ditches, and spaces between the containers were filled with natural soil. The system was economic, and could increase soil temperatures obviously and uniformly, the maximal and minimal standard errors of soil temperatures were ±0.28 and ±0.05°C at 10cm depth in the containers within each of all the ditches. In the system, aboveground environment was natural, diurnal and monthly soil temperatures varied with changing air temperature, the research results may be better to know the eco-physiological and growth responses of alpine saplings/seedlings to soil warming than that in greenhouse, laboratory, infrared heat lamp and open top chamber.