Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mec...Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.展开更多
As a great threat to all livings on earth,waste artificial plastics now are everywhere,from oceans to our cells[1].The world cannot withstand the growing waste plastic in million tonnes every year,which has already ca...As a great threat to all livings on earth,waste artificial plastics now are everywhere,from oceans to our cells[1].The world cannot withstand the growing waste plastic in million tonnes every year,which has already caused environmental pollution and economic losses[2].Besides the efforts for preparing novel plastics with the self‐decomposition ability,methods are needed to clear away these waste plastics leftover from history or recycle well this organic carbon resource[3].Photocatalysis is a potential solution for the conversion of waste plastics under mild conditions.In this perspective,we highlight the effect of photocatalytic approaches toward the generation of low carbon number organic products(C_(n) products,n≤8)from waste plastics,which can proceed under an inert or aerobic atmosphere.Notably,critical analysis of the carbon source in products is necessary to reveal the active species for the C–X bonds(X=C,N,and O)cleavage of plastics.Finally,we outline potential avenues for further development of this emerging field to enhance the yield of C_(n)(n≤8)products from waste plastics.展开更多
基金supported by the National Natural Science Foundation of China (30671644, 30771680)
文摘Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable.
文摘As a great threat to all livings on earth,waste artificial plastics now are everywhere,from oceans to our cells[1].The world cannot withstand the growing waste plastic in million tonnes every year,which has already caused environmental pollution and economic losses[2].Besides the efforts for preparing novel plastics with the self‐decomposition ability,methods are needed to clear away these waste plastics leftover from history or recycle well this organic carbon resource[3].Photocatalysis is a potential solution for the conversion of waste plastics under mild conditions.In this perspective,we highlight the effect of photocatalytic approaches toward the generation of low carbon number organic products(C_(n) products,n≤8)from waste plastics,which can proceed under an inert or aerobic atmosphere.Notably,critical analysis of the carbon source in products is necessary to reveal the active species for the C–X bonds(X=C,N,and O)cleavage of plastics.Finally,we outline potential avenues for further development of this emerging field to enhance the yield of C_(n)(n≤8)products from waste plastics.