Numerical solution of yield viscoplastic fluid flow is hindered by the singularity inherent to the Herschel-Bulkley model. A finite difference method over the boundary-fitted orthogonal coordinate system is util- ized...Numerical solution of yield viscoplastic fluid flow is hindered by the singularity inherent to the Herschel-Bulkley model. A finite difference method over the boundary-fitted orthogonal coordinate system is util- ized to investigate numerically the fully developed steady flow of non-Newtonian yield viscoplastic fluid through concentric and eccentric annuli. The fluid rheology is described with the Herschel-Bulkley model. The numerical simulation based on a continuous viscoplastic approach to the Herschel-Bulkley model is found in poor accordance with the experimental data on volumetric flow rate of a bentonite suspension. A strict mathematical model for Herschel-Bulkley fluid flow is established and the corresponding numerical procedures are proposed. However, only the case of flow of a Herschel-Bulkley fluid in a concentric annulus is resolved based on the presumed flow stnicture by using the common optimization technique. Possible flow structures in an eccentric afinulus are presumed, and further challenges in numerical simulation of the Herschel-Bulkley fluid flow are suggested.展开更多
基金Supported by the State Key Development Program for Basic Research of China (2009CB623406)the National Natural Science Foundation of China (20990224,11172299)the National Science Fund for Distinguished Young Scholars (21025627)
文摘Numerical solution of yield viscoplastic fluid flow is hindered by the singularity inherent to the Herschel-Bulkley model. A finite difference method over the boundary-fitted orthogonal coordinate system is util- ized to investigate numerically the fully developed steady flow of non-Newtonian yield viscoplastic fluid through concentric and eccentric annuli. The fluid rheology is described with the Herschel-Bulkley model. The numerical simulation based on a continuous viscoplastic approach to the Herschel-Bulkley model is found in poor accordance with the experimental data on volumetric flow rate of a bentonite suspension. A strict mathematical model for Herschel-Bulkley fluid flow is established and the corresponding numerical procedures are proposed. However, only the case of flow of a Herschel-Bulkley fluid in a concentric annulus is resolved based on the presumed flow stnicture by using the common optimization technique. Possible flow structures in an eccentric afinulus are presumed, and further challenges in numerical simulation of the Herschel-Bulkley fluid flow are suggested.