In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and imp...In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and implemented. First, an improved algorithm of a multi-resolution file-pyramid construction which is used for the organization of massive image data is presented. Then, a strategy, adopting technologies such as view-dependent levels of detail, target-tiles quick search and tiles seamless connection, is presented for fast scheduling and viewing of images. The results show that compared with the solution of multi-scale image representations based on wavelet, the proposed solution can improve the rendering speed, and the rendering speed does not depend on the image size, though it increases some data storage space. And the proposed solution is suitable for embedded devices and friendly experience.展开更多
Experiments were conducted to investigate the deformation of cantilever sandwich beams with pyramidal truss cores subjected to impact by a projectile at their tips.A new technique was employed to the fabrication of sa...Experiments were conducted to investigate the deformation of cantilever sandwich beams with pyramidal truss cores subjected to impact by a projectile at their tips.A new technique was employed to the fabrication of sandwich beams with pyramidal truss cores.For a better observation of large deformation of specimens during impact process,a high-speed digital video camera was successfully used to capture the instant shapes of the deformed beams.A projectile collection device was designed and installed to avoid the projectile flying away from the beam tips after impact and thus the kinetic energy imparted to the beams was measurable.The experiments show that the sandwich beams have a superior shock resistance compared to the monolithic beams of the same material and mass.Further,finite element simulations were performed to gain insight into the deformations and plastic energy absorptions in the sandwich beams.展开更多
基金The National Public Benefit Research Foundation of China (No. 201111013-02)
文摘In order to resolve the conflict between the limited resources of embedded devices and the growing amount of massive image data to be shown, a solution for fast images rendering in embedded devices is proposed and implemented. First, an improved algorithm of a multi-resolution file-pyramid construction which is used for the organization of massive image data is presented. Then, a strategy, adopting technologies such as view-dependent levels of detail, target-tiles quick search and tiles seamless connection, is presented for fast scheduling and viewing of images. The results show that compared with the solution of multi-scale image representations based on wavelet, the proposed solution can improve the rendering speed, and the rendering speed does not depend on the image size, though it increases some data storage space. And the proposed solution is suitable for embedded devices and friendly experience.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11032001 and 10602005)
文摘Experiments were conducted to investigate the deformation of cantilever sandwich beams with pyramidal truss cores subjected to impact by a projectile at their tips.A new technique was employed to the fabrication of sandwich beams with pyramidal truss cores.For a better observation of large deformation of specimens during impact process,a high-speed digital video camera was successfully used to capture the instant shapes of the deformed beams.A projectile collection device was designed and installed to avoid the projectile flying away from the beam tips after impact and thus the kinetic energy imparted to the beams was measurable.The experiments show that the sandwich beams have a superior shock resistance compared to the monolithic beams of the same material and mass.Further,finite element simulations were performed to gain insight into the deformations and plastic energy absorptions in the sandwich beams.