基于塔康系统的斜距、方位和高程可对目标定位,但较大的量测误差影响定位精度。为提高估计精度,研究塔康中最佳线性无偏估计(best linear unbiased estimation,BLUE)滤波器的实现。建立地面站对目标的量测模型,并分析量测转换误差特性,...基于塔康系统的斜距、方位和高程可对目标定位,但较大的量测误差影响定位精度。为提高估计精度,研究塔康中最佳线性无偏估计(best linear unbiased estimation,BLUE)滤波器的实现。建立地面站对目标的量测模型,并分析量测转换误差特性,推导出对应的BLUE滤波模型;针对目标从地面站上空过顶时出现无效量测的问题,通过对高程量测补偿的方法予以克服,解决传统算法在强非线性量测下误差较大的弊病。与经典方法的性能对比表明,改进算法有效地抑制了强非线性量测下的滤波发散,有很强的鲁棒性和实时性。展开更多
文摘基于塔康系统的斜距、方位和高程可对目标定位,但较大的量测误差影响定位精度。为提高估计精度,研究塔康中最佳线性无偏估计(best linear unbiased estimation,BLUE)滤波器的实现。建立地面站对目标的量测模型,并分析量测转换误差特性,推导出对应的BLUE滤波模型;针对目标从地面站上空过顶时出现无效量测的问题,通过对高程量测补偿的方法予以克服,解决传统算法在强非线性量测下误差较大的弊病。与经典方法的性能对比表明,改进算法有效地抑制了强非线性量测下的滤波发散,有很强的鲁棒性和实时性。