Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing rati...Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing ratio (3%-9% in mass fraction) and thickness (1-7 mm) on the microwave absorption properties was systematically investigated in microwave frequency range of 2-18 GHz. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and scalar network analyzer (SNA) were used for characterizing microstructure and evaluating microwave absorption properties. Experimental results show the significant frequency (6-18 GHz) dependence of the complex relative permeability and permittivity. The reflection loss (RL) with different thickness and short-wire packing ratio reveals that the composite sample containing 7% exhibits better microwave absorption behavior with its minimum value of RL reaching-34 dB in thickness of 3 mm at 14 GHz. Therefore, it is significantly useful to develop microwire-dielectric materials with much wider absorption band for microwave absorption applications.展开更多
The Al-Cu-Li alloy is welded by using laser beam welding,and the welding wire ER4043 is used as filler metal. The microstructure and mechanical property of welded joints are systematically investigated. Microstructure...The Al-Cu-Li alloy is welded by using laser beam welding,and the welding wire ER4043 is used as filler metal. The microstructure and mechanical property of welded joints are systematically investigated. Microstructure analyses show that the fusion zone is mainly composed of α-Al matrix phase and some strengthening phases including T,δ’,θ’,β’ and T1,etc. During welding,the weld formation and joint quality are obviously improved by the addition of Al-Si filler wire. The measurements of mechanical property indicate that,compared with that of the base metal(BM), the microhardness in the weld zone is decreased to a certain extent. Under the appropriate welding parameters,the tensile strength of welded joint reaches 369.4 MPa,which is 67.8% of that of the BM. There are many dimples on the joint fracture surface,and it mainly presents the fracture characteristic of dimple aggregation.展开更多
基金Project(51371067)supported by the National Natural Science Foundation of China
文摘Coaxially dielectric samples consisting of different packing ratios of glass-covered Fe73.5Si13.5B9Nb3Cu1 amorphous wires embedded in a paraffin wax matrix were fabricated, and the influence of short-wire packing ratio (3%-9% in mass fraction) and thickness (1-7 mm) on the microwave absorption properties was systematically investigated in microwave frequency range of 2-18 GHz. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and scalar network analyzer (SNA) were used for characterizing microstructure and evaluating microwave absorption properties. Experimental results show the significant frequency (6-18 GHz) dependence of the complex relative permeability and permittivity. The reflection loss (RL) with different thickness and short-wire packing ratio reveals that the composite sample containing 7% exhibits better microwave absorption behavior with its minimum value of RL reaching-34 dB in thickness of 3 mm at 14 GHz. Therefore, it is significantly useful to develop microwire-dielectric materials with much wider absorption band for microwave absorption applications.
基金supported by the Key Research and Development Program of Zhenjiang City(No. GY2019004).
文摘The Al-Cu-Li alloy is welded by using laser beam welding,and the welding wire ER4043 is used as filler metal. The microstructure and mechanical property of welded joints are systematically investigated. Microstructure analyses show that the fusion zone is mainly composed of α-Al matrix phase and some strengthening phases including T,δ’,θ’,β’ and T1,etc. During welding,the weld formation and joint quality are obviously improved by the addition of Al-Si filler wire. The measurements of mechanical property indicate that,compared with that of the base metal(BM), the microhardness in the weld zone is decreased to a certain extent. Under the appropriate welding parameters,the tensile strength of welded joint reaches 369.4 MPa,which is 67.8% of that of the BM. There are many dimples on the joint fracture surface,and it mainly presents the fracture characteristic of dimple aggregation.