Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The res...Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The results show that the propagation phenomenon of stress wave in the surrounding rock of tunnel and the failure process of surrounding rock under explosive stress waves are reproduced realistically by using numerical code RFPA2O; from the failure process of surrounding rock, the place at which surrounding rock fractures is transferred because of tunnel reinforcing, and the rockfall and collapse caused by failure of surrounding rock are restrained by tunnel reinforcing; furthermore, the absolute values of peak values of major principal stress, and the minimal principal stress and shear stress at center point of tunnel roof are reduced because of tunnel reinforcing, and the displacement at center point of runnel roof is reduced as well, consequently the stability of tunnel increases.展开更多
Strengthening reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP) was studied experimentally as described in Part I of this paper (Huang et al., 2005). In that paper, R. C. beams...Strengthening reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP) was studied experimentally as described in Part I of this paper (Huang et al., 2005). In that paper, R. C. beams, R. C. beams with GFRP (glass fiber-reinforced polymer) sheets, and R. C. beams with PGFRP sheets were tested in both under-strengthened and over-strengthened cases. The test results showed that the load-carrying capacities (ultimate loads) of the beams with GFRP sheets were greater than those of the beams without polymer sheets. The load-carrying capacities of beams with PGFRP sheets were greater than those of beams with GFRP sheets. The objective of this work is to develop an analytical method to compute all of these load-carrying capacities. This analytical method is independent of the experiments and based only on the traditional R. C. and P. C. (prestressed concrete) theory. The analytical results accorded with the test results. It is suggested that this analytical method be used for analyzing and designing R. C. beams strengthened using GFRP or PGFRP sheets.展开更多
An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition ...An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill.展开更多
A new type of bridge called "butterfly web bridge" is under construction in Japan. In a butterfly web bridge, the butterfly-shaped web forms a structure that exhibits behavior similar to a double Warren truss. The 8...A new type of bridge called "butterfly web bridge" is under construction in Japan. In a butterfly web bridge, the butterfly-shaped web forms a structure that exhibits behavior similar to a double Warren truss. The 80 MPa concrete is used for the butterfly web which has a precast plate with a thickness of 150 mm. As butterfly web is a concrete material, reinforcement provided by prestressing tendons is needed on the tension side. Moreover, the 150 mm plate has no re-bars but is reinforced by steel fibers. This bridge, named Takubogawa Bridge, is a highway bridge and has 10 spans including the 87.5 m maximum span length. Takubogawa Bridge is constructed by flee cantilevering method. The butterfly web enables the construction speed of cantilevering to be advanced about 50% compared with conventional cast-in-situ method and can meet the requirement of light weight and low maintenance.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
When recording a hologram,we should control the exposure amount which is in nonlinear area of the characteristic curve of complex amplitude transmittance t-exposure H,the hologram can diffract some higher-order diffra...When recording a hologram,we should control the exposure amount which is in nonlinear area of the characteristic curve of complex amplitude transmittance t-exposure H,the hologram can diffract some higher-order diffracted photograph.The amount of diffracted order has something to do with the recording angle betweenobject beam and reference beam,is concerned with the ship of transmission curve.Theintensity distribution of the higher-order diffracted beam is modulated by the change of phase difference.If the phase difference increased a time,the number of diffracted fringes also increased a time,it is similar to a fringe multipler,that it is obvious to increase the precision of interferometry.Nonlinear recording of double exposure method is discussed,and the formula of intensity distribution of second order diffracted photography,and experimental results are given.展开更多
In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume...In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.展开更多
In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried o...In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.展开更多
The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified...The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity.展开更多
To discuss the applicability of advanced composite carbon fiber reinforced polymer(CFRP) and ultrahigh performance concrete reactive powder concrete(RPC) in super-long span cable-stayed bridges, taking a 1 008 m cable...To discuss the applicability of advanced composite carbon fiber reinforced polymer(CFRP) and ultrahigh performance concrete reactive powder concrete(RPC) in super-long span cable-stayed bridges, taking a 1 008 m cable-stayed bridge with steel girders and steel cables as an example,a new cable-stayed bridge in the same span with RPC girders and CFRP cables was designed,in which the cable's cross section was determined by the principle of equivalent cable capacity and the girder's cross section was determined in virtual of its stiffness, shear capacity and local stability. Based on the methods of finite element analysis,the comparative analysis of these two cable-stayed bridge schemes about static performances,dynamic performances,stability and wind resistance behavior were carried out. The results showed that it was feasible to form a highly efficient,durable concrete cable-stayed bridge with RPC girders and CFRP cables and made its applicable span range expand to 1 000 m long around.展开更多
Introduction In the United States, there are about 17.6 million patients suffer from symptomatic coronary artery disease (CAD), affecting 7.9% of adults ≥ 20 years of age.1 An estimated 10.2 million patients have ...Introduction In the United States, there are about 17.6 million patients suffer from symptomatic coronary artery disease (CAD), affecting 7.9% of adults ≥ 20 years of age.1 An estimated 10.2 million patients have angina, and 500,000 patients will develop new angina pectoris each year. 1 A subset of angina patients are categorized as refractory when symptoms continue despite optimal medical therapy and revascularization.Routine daily activities become impossible without experiencing chest pain in this patient population.2展开更多
The influence of gravity on the reaction engineering of tubular reactor is studied by analyzing the residence time distribution curves.The results show that upflow-feeding mode is more beneficial compared with downflo...The influence of gravity on the reaction engineering of tubular reactor is studied by analyzing the residence time distribution curves.The results show that upflow-feeding mode is more beneficial compared with downflow-feeding mode,since the flow pattern of the fluid in the reactor is closer to plug flow.The result of dynamic experiment conducted in ion-exchange of tungsten metallurgy is as good as that in reaction engineering of ion-exchange column.Whether downflow-feeding or upflow-feeding mode is adopted,breakthrough time decreases when solution concentration increases.Upflow-feeding mode has longer breakthrough time and greater improvement in adsorption capacity especially with high WO3 concentration in ion-exchange.展开更多
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w...This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.展开更多
The dynamic theory of die swell deduced in a previous paper was extensively applied to study the extrudate swelling behaviors of two entangled polymeric liquids (HDPE and PBD) in a simple shear flow at steady shear ...The dynamic theory of die swell deduced in a previous paper was extensively applied to study the extrudate swelling behaviors of two entangled polymeric liquids (HDPE and PBD) in a simple shear flow at steady shear stress. The mechanism and dynamics for the recoils and the recoveries of viscoelastic strains in the extrudate were investigated under the free recovery and dynamic states. It was found that in the course of recovery the free recoil and the growth of die swell in the extrudate may be divided into two recovery regions (instantaneous and delayed regions) and three growth stages (instantaneous, delayed, and ultimate extrudate swelling stages). The free recoil and the extrudate swelling behaviors may be expressed as a function of shear stress. The correlations of instantaneous, delayed, total and ultimate extrudate swell effects to the molecular parameters and the operational variables in the simple shear flow at steady shear stress were derived from the dynamic theory of die swell. Also, two sets of new universal equations on the total extrudate swelling effect (TESE) and ultimate extrudate swelling effect (UESE) were deduced. The first is the universal equation of the logarithmic correlation between the TESE and the growth time under the free and dynamic states; the second is the universal equation of the logarithmic correlation between the UESE and the operational variables under the free and equilibrium states. The first equation was verified by experimental data of PBD with different molecular weights at different operational variables. The second equation was verified by experimental data of HDPE at two temperatures and different operational variables. An excellent agreement result was obtained. The excellent agreement shows that the two universal equations can be used directly to predict the correlations of the TESE and UESE to the growth time, the molecular parameters, and the operational variables under the dynamic and equilibrium states.展开更多
SiN, films are deposited on silicon wafers through plasma enhanced chemical vapor deposition (PECVD). The relationship between the film stress and deposition factors is investigated. It is found that low stress film...SiN, films are deposited on silicon wafers through plasma enhanced chemical vapor deposition (PECVD). The relationship between the film stress and deposition factors is investigated. It is found that low stress films would be obtained by adjusting the ratio of low frequency(LF) power to high frequency(HF) power pulse time or the chamber pressure. The best of the two methods to control stress in the film is changing the percentage of LF power pulse time. The low stress condition is achieved when the percentage of low frequency power pulse time in total time(LF and HF pulse time) is close to 40%, The low stress cantilever of tunable vertical cavity surface emitting laser is obtained by using this deposition condition,展开更多
基金Projects(50874020, 50504005 and 50490274) supported by the National Natural Science Foundation of ChinaPorject(2007CB209407) supported by Major State Basic Research Development Program of ChinaProject(2005038250) supported by Postdoctoral Science Foundation of China
文摘Based on mesoscopic damage mechanics, numerical code RFPA2D (dynamic edition) was developed to analyze the influence of tunnel reinforcing on failure process of surrounding rock under explosive stress waves. The results show that the propagation phenomenon of stress wave in the surrounding rock of tunnel and the failure process of surrounding rock under explosive stress waves are reproduced realistically by using numerical code RFPA2O; from the failure process of surrounding rock, the place at which surrounding rock fractures is transferred because of tunnel reinforcing, and the rockfall and collapse caused by failure of surrounding rock are restrained by tunnel reinforcing; furthermore, the absolute values of peak values of major principal stress, and the minimal principal stress and shear stress at center point of tunnel roof are reduced because of tunnel reinforcing, and the displacement at center point of runnel roof is reduced as well, consequently the stability of tunnel increases.
文摘Strengthening reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP) was studied experimentally as described in Part I of this paper (Huang et al., 2005). In that paper, R. C. beams, R. C. beams with GFRP (glass fiber-reinforced polymer) sheets, and R. C. beams with PGFRP sheets were tested in both under-strengthened and over-strengthened cases. The test results showed that the load-carrying capacities (ultimate loads) of the beams with GFRP sheets were greater than those of the beams without polymer sheets. The load-carrying capacities of beams with PGFRP sheets were greater than those of beams with GFRP sheets. The objective of this work is to develop an analytical method to compute all of these load-carrying capacities. This analytical method is independent of the experiments and based only on the traditional R. C. and P. C. (prestressed concrete) theory. The analytical results accorded with the test results. It is suggested that this analytical method be used for analyzing and designing R. C. beams strengthened using GFRP or PGFRP sheets.
基金Projects(50479057, 50639060) supported by the National Natural Science Foundation of China
文摘An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill.
文摘A new type of bridge called "butterfly web bridge" is under construction in Japan. In a butterfly web bridge, the butterfly-shaped web forms a structure that exhibits behavior similar to a double Warren truss. The 80 MPa concrete is used for the butterfly web which has a precast plate with a thickness of 150 mm. As butterfly web is a concrete material, reinforcement provided by prestressing tendons is needed on the tension side. Moreover, the 150 mm plate has no re-bars but is reinforced by steel fibers. This bridge, named Takubogawa Bridge, is a highway bridge and has 10 spans including the 87.5 m maximum span length. Takubogawa Bridge is constructed by flee cantilevering method. The butterfly web enables the construction speed of cantilevering to be advanced about 50% compared with conventional cast-in-situ method and can meet the requirement of light weight and low maintenance.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
文摘When recording a hologram,we should control the exposure amount which is in nonlinear area of the characteristic curve of complex amplitude transmittance t-exposure H,the hologram can diffract some higher-order diffracted photograph.The amount of diffracted order has something to do with the recording angle betweenobject beam and reference beam,is concerned with the ship of transmission curve.Theintensity distribution of the higher-order diffracted beam is modulated by the change of phase difference.If the phase difference increased a time,the number of diffracted fringes also increased a time,it is similar to a fringe multipler,that it is obvious to increase the precision of interferometry.Nonlinear recording of double exposure method is discussed,and the formula of intensity distribution of second order diffracted photography,and experimental results are given.
基金Supported by Australia Research Council(No.DP0451966)
文摘In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.
基金Project(51178419)supported by the National Natural Science Foundation of China
文摘In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.
基金Project (50478502) supported by the National Natural Science Foundation of China
文摘The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity.
基金National Natural Science Foundation of China(No.51078134)Natural Science Foundation of Jiangxi Province(No.20114BAB206010)Department of Education Foundation of Jiangxi Province(No.GJJ11449)
文摘To discuss the applicability of advanced composite carbon fiber reinforced polymer(CFRP) and ultrahigh performance concrete reactive powder concrete(RPC) in super-long span cable-stayed bridges, taking a 1 008 m cable-stayed bridge with steel girders and steel cables as an example,a new cable-stayed bridge in the same span with RPC girders and CFRP cables was designed,in which the cable's cross section was determined by the principle of equivalent cable capacity and the girder's cross section was determined in virtual of its stiffness, shear capacity and local stability. Based on the methods of finite element analysis,the comparative analysis of these two cable-stayed bridge schemes about static performances,dynamic performances,stability and wind resistance behavior were carried out. The results showed that it was feasible to form a highly efficient,durable concrete cable-stayed bridge with RPC girders and CFRP cables and made its applicable span range expand to 1 000 m long around.
文摘Introduction In the United States, there are about 17.6 million patients suffer from symptomatic coronary artery disease (CAD), affecting 7.9% of adults ≥ 20 years of age.1 An estimated 10.2 million patients have angina, and 500,000 patients will develop new angina pectoris each year. 1 A subset of angina patients are categorized as refractory when symptoms continue despite optimal medical therapy and revascularization.Routine daily activities become impossible without experiencing chest pain in this patient population.2
基金Project(2006AA06Z122)supported by the National High-tech Research and Development of China
文摘The influence of gravity on the reaction engineering of tubular reactor is studied by analyzing the residence time distribution curves.The results show that upflow-feeding mode is more beneficial compared with downflow-feeding mode,since the flow pattern of the fluid in the reactor is closer to plug flow.The result of dynamic experiment conducted in ion-exchange of tungsten metallurgy is as good as that in reaction engineering of ion-exchange column.Whether downflow-feeding or upflow-feeding mode is adopted,breakthrough time decreases when solution concentration increases.Upflow-feeding mode has longer breakthrough time and greater improvement in adsorption capacity especially with high WO3 concentration in ion-exchange.
文摘This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.
文摘The dynamic theory of die swell deduced in a previous paper was extensively applied to study the extrudate swelling behaviors of two entangled polymeric liquids (HDPE and PBD) in a simple shear flow at steady shear stress. The mechanism and dynamics for the recoils and the recoveries of viscoelastic strains in the extrudate were investigated under the free recovery and dynamic states. It was found that in the course of recovery the free recoil and the growth of die swell in the extrudate may be divided into two recovery regions (instantaneous and delayed regions) and three growth stages (instantaneous, delayed, and ultimate extrudate swelling stages). The free recoil and the extrudate swelling behaviors may be expressed as a function of shear stress. The correlations of instantaneous, delayed, total and ultimate extrudate swell effects to the molecular parameters and the operational variables in the simple shear flow at steady shear stress were derived from the dynamic theory of die swell. Also, two sets of new universal equations on the total extrudate swelling effect (TESE) and ultimate extrudate swelling effect (UESE) were deduced. The first is the universal equation of the logarithmic correlation between the TESE and the growth time under the free and dynamic states; the second is the universal equation of the logarithmic correlation between the UESE and the operational variables under the free and equilibrium states. The first equation was verified by experimental data of PBD with different molecular weights at different operational variables. The second equation was verified by experimental data of HDPE at two temperatures and different operational variables. An excellent agreement result was obtained. The excellent agreement shows that the two universal equations can be used directly to predict the correlations of the TESE and UESE to the growth time, the molecular parameters, and the operational variables under the dynamic and equilibrium states.
基金National Basic Research Program of China(2006CB604902) Academic Human Resources Development inInstitutions of Higher Learning Under the Jurisdiction of Beijing Municipality(05002015200504)
文摘SiN, films are deposited on silicon wafers through plasma enhanced chemical vapor deposition (PECVD). The relationship between the film stress and deposition factors is investigated. It is found that low stress films would be obtained by adjusting the ratio of low frequency(LF) power to high frequency(HF) power pulse time or the chamber pressure. The best of the two methods to control stress in the film is changing the percentage of LF power pulse time. The low stress condition is achieved when the percentage of low frequency power pulse time in total time(LF and HF pulse time) is close to 40%, The low stress cantilever of tunable vertical cavity surface emitting laser is obtained by using this deposition condition,