期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
认知规律启发的物体分割评价标准及损失函数
被引量:
12
1
作者
范登平
季葛鹏
+1 位作者
秦雪彬
程明明
《中国科学:信息科学》
CSCD
北大核心
2021年第9期1475-1489,共15页
物体分割技术是计算机视觉中的研究热点,在多个领域都有广泛的应用.本文从人类视觉系统对场景中的全局信息和局部细节非常敏感的角度出发,设计了一种新颖、高效且易于计算的增强匹配标准(Eξ)来评估物体分割模型的性能.Eξ将局部像素值...
物体分割技术是计算机视觉中的研究热点,在多个领域都有广泛的应用.本文从人类视觉系统对场景中的全局信息和局部细节非常敏感的角度出发,设计了一种新颖、高效且易于计算的增强匹配标准(Eξ)来评估物体分割模型的性能.Eξ将局部像素值与全局平均值有机结合,以便评估分割结果与标准结果在图像级和像素级的相似度.在国际主流的4个公开数据集上的大量实验表明,Eξ在多个方面,如应用关联度、随机偏好度、噪声偏好度、感知度上相比现有广泛采纳的评价标准(IoU和Fβ)均有大幅相对提升.通过利用加权二值交叉熵损失函数、本文的增强匹配损失函数以及加权交并比损失函数,本文进一步设计了一套组合损失函数(Hybrid-Eloss)来促进网络学习到像素级、对象级和图像级的分割特征.定性和定量的结果表明,在3个不同领域的分割任务中使用这一组合损失函数能够进一步提高物体分割的精度.
展开更多
关键词
物体分割技术
评价
标准
视觉感知
增强匹配标准
损失函数
原文传递
题名
认知规律启发的物体分割评价标准及损失函数
被引量:
12
1
作者
范登平
季葛鹏
秦雪彬
程明明
机构
南开大学计算机学院
武汉大学计算机学院
Department of Computing Science
出处
《中国科学:信息科学》
CSCD
北大核心
2021年第9期1475-1489,共15页
基金
新一代人工智能重大项目(批准号:2018AAA0100400)
国家自然科学基金优秀青年科学基金项目(批准号:61922046)
+1 种基金
教育部指导高校科技创新规划项目
南开大学中央高校基本科研业务费专项资金项目(批准号:63201169)资助。
文摘
物体分割技术是计算机视觉中的研究热点,在多个领域都有广泛的应用.本文从人类视觉系统对场景中的全局信息和局部细节非常敏感的角度出发,设计了一种新颖、高效且易于计算的增强匹配标准(Eξ)来评估物体分割模型的性能.Eξ将局部像素值与全局平均值有机结合,以便评估分割结果与标准结果在图像级和像素级的相似度.在国际主流的4个公开数据集上的大量实验表明,Eξ在多个方面,如应用关联度、随机偏好度、噪声偏好度、感知度上相比现有广泛采纳的评价标准(IoU和Fβ)均有大幅相对提升.通过利用加权二值交叉熵损失函数、本文的增强匹配损失函数以及加权交并比损失函数,本文进一步设计了一套组合损失函数(Hybrid-Eloss)来促进网络学习到像素级、对象级和图像级的分割特征.定性和定量的结果表明,在3个不同领域的分割任务中使用这一组合损失函数能够进一步提高物体分割的精度.
关键词
物体分割技术
评价
标准
视觉感知
增强匹配标准
损失函数
Keywords
object segmentation
metric
cognitive vision
enhanced-alignment measure
loss function
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
认知规律启发的物体分割评价标准及损失函数
范登平
季葛鹏
秦雪彬
程明明
《中国科学:信息科学》
CSCD
北大核心
2021
12
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部