为了有效解决水下图像亮度、对比度过低和颜色混乱等问题,提出一种改进的多尺度密集残差网络的水下图像增强方法。对原始图像进行多尺度特征提取,更好地保留了图像细节,通过改进的密集残差网络对水下图像进行增强处理,提升图像亮度和对...为了有效解决水下图像亮度、对比度过低和颜色混乱等问题,提出一种改进的多尺度密集残差网络的水下图像增强方法。对原始图像进行多尺度特征提取,更好地保留了图像细节,通过改进的密集残差网络对水下图像进行增强处理,提升图像亮度和对比度,校正图像颜色,在每个密集残差网络间添加了SK注意力机制,可以选择性地捕捉输入图像的关键信息并进行处理,将增强后的水下图像进行多尺度融合。通过Type和EUVP两个水下图像数据集对所提出方法进行验证,基于物理模型和数据驱动的6种方法进行了主观效果和客观指标间的比较。在主观效果的定性分析中发现,所提出的方法在提高亮度和对比度方面取得了很大的进步。在客观图像评价指标的定量分析中,峰值信噪比(Peak Signal to Noise Ratio,PSNR)、结构相似性(Structural Similarity,SSIM)、信噪比(Signal to Noise Ratio,SNR)、均方误差(Mean Square Error,MSE)、视觉信息保真度(Visual Information Fidelity,VIF)、信息保真度准则(Information Fidelity Criterion,IFC)、噪声质量评价(Noise Quality Measure,NQM)、亮度顺序误差(Lightness Order Error,LOE)和自然图像质量评价(Natural Image Quality Evaluator,NIQE)指标较现有的水下图像增强算法分别提高了1.5%,1%,1.2%,1.2%,1.3%,1.2%,1.7%,3.0%和1.1%。提出的改进多尺度密集残差网络不仅可以增强图像的亮度、对比度以及校正图像的颜色,而且可以应用于更广泛的水域场景。展开更多
文摘为了有效解决水下图像亮度、对比度过低和颜色混乱等问题,提出一种改进的多尺度密集残差网络的水下图像增强方法。对原始图像进行多尺度特征提取,更好地保留了图像细节,通过改进的密集残差网络对水下图像进行增强处理,提升图像亮度和对比度,校正图像颜色,在每个密集残差网络间添加了SK注意力机制,可以选择性地捕捉输入图像的关键信息并进行处理,将增强后的水下图像进行多尺度融合。通过Type和EUVP两个水下图像数据集对所提出方法进行验证,基于物理模型和数据驱动的6种方法进行了主观效果和客观指标间的比较。在主观效果的定性分析中发现,所提出的方法在提高亮度和对比度方面取得了很大的进步。在客观图像评价指标的定量分析中,峰值信噪比(Peak Signal to Noise Ratio,PSNR)、结构相似性(Structural Similarity,SSIM)、信噪比(Signal to Noise Ratio,SNR)、均方误差(Mean Square Error,MSE)、视觉信息保真度(Visual Information Fidelity,VIF)、信息保真度准则(Information Fidelity Criterion,IFC)、噪声质量评价(Noise Quality Measure,NQM)、亮度顺序误差(Lightness Order Error,LOE)和自然图像质量评价(Natural Image Quality Evaluator,NIQE)指标较现有的水下图像增强算法分别提高了1.5%,1%,1.2%,1.2%,1.3%,1.2%,1.7%,3.0%和1.1%。提出的改进多尺度密集残差网络不仅可以增强图像的亮度、对比度以及校正图像的颜色,而且可以应用于更广泛的水域场景。