在EnlightenGAN的启发下,提出了一种新的基于无监督学习全局和局部特征建模的低光照图像增强网络(Low-light Image Enhancement Network Based on Unsupervised Learning Global and Local Feature Modeling Image Enhancement,GLFMIE)...在EnlightenGAN的启发下,提出了一种新的基于无监督学习全局和局部特征建模的低光照图像增强网络(Low-light Image Enhancement Network Based on Unsupervised Learning Global and Local Feature Modeling Image Enhancement,GLFMIE)。该网络分为两个阶段:生成网络和判别网络。生成网络包括全局和局部特征建模网络,判别网络包括全局和局部判别网络。在全局特征建模中创新性地引入了Swin-Transformer Block,其移位窗口机制可以以较少的内存消耗对输入图像进行长距离的特征依赖建模,并很好地提取图像颜色、纹理和形状的特征,从而有效地抑制噪声和伪影。在局部特征建模中,设计了一种多尺度图像和特征聚合(Multi-Scale Image and Feature Aggregation,MSIFA)网络,允许在单个U型网内交换来自不同尺度的信息,进一步增强图像特征的表征能力。在多个公共数据集的测试实验中,与已有一些先进低光照图像增强算法相比,该算法均取得了SOTA级别的表现。展开更多
由于实际采集数据的局部邻域并非位于线性子空间中,传统的局部线性嵌入算法无法出提取显著特征。针对该问题,提出了局部线性增强嵌入(local linear augmentation embedding,LLAE)算法。首先通过高维重构模型挖掘出流形的本质结构;然后...由于实际采集数据的局部邻域并非位于线性子空间中,传统的局部线性嵌入算法无法出提取显著特征。针对该问题,提出了局部线性增强嵌入(local linear augmentation embedding,LLAE)算法。首先通过高维重构模型挖掘出流形的本质结构;然后将邻域线性增强策略引入到低维目标函数的构造中,通过构造均值和方差模型,获得样本的显著特征。在两个轴承数据集上进行了大量的实验,LLAE算法获得了良好的可视化和聚类效果,识别精度达到了97%以上。这表明LLAE算法能够提取出显著的特征,实现更有效的故障诊断。展开更多
文摘在EnlightenGAN的启发下,提出了一种新的基于无监督学习全局和局部特征建模的低光照图像增强网络(Low-light Image Enhancement Network Based on Unsupervised Learning Global and Local Feature Modeling Image Enhancement,GLFMIE)。该网络分为两个阶段:生成网络和判别网络。生成网络包括全局和局部特征建模网络,判别网络包括全局和局部判别网络。在全局特征建模中创新性地引入了Swin-Transformer Block,其移位窗口机制可以以较少的内存消耗对输入图像进行长距离的特征依赖建模,并很好地提取图像颜色、纹理和形状的特征,从而有效地抑制噪声和伪影。在局部特征建模中,设计了一种多尺度图像和特征聚合(Multi-Scale Image and Feature Aggregation,MSIFA)网络,允许在单个U型网内交换来自不同尺度的信息,进一步增强图像特征的表征能力。在多个公共数据集的测试实验中,与已有一些先进低光照图像增强算法相比,该算法均取得了SOTA级别的表现。
文摘由于实际采集数据的局部邻域并非位于线性子空间中,传统的局部线性嵌入算法无法出提取显著特征。针对该问题,提出了局部线性增强嵌入(local linear augmentation embedding,LLAE)算法。首先通过高维重构模型挖掘出流形的本质结构;然后将邻域线性增强策略引入到低维目标函数的构造中,通过构造均值和方差模型,获得样本的显著特征。在两个轴承数据集上进行了大量的实验,LLAE算法获得了良好的可视化和聚类效果,识别精度达到了97%以上。这表明LLAE算法能够提取出显著的特征,实现更有效的故障诊断。