期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
增强高斯混合模型与集成学习的室内定位方法 被引量:1
1
作者 胡锐 吴飞 +3 位作者 朱海 鄢松 韩学法 金霄 《导航定位学报》 CSCD 2021年第3期48-54,共7页
传统构建指纹数据库是在参考点收集来自接入点的接收信号强度,但由于在同一参考点上来自同一接入点的接收信号强度变化的无规律性,以及实时定位时,单一分类器对接收信号强度的分类性能差,针对此问题,提出增强高斯混合模型重建指纹数据库... 传统构建指纹数据库是在参考点收集来自接入点的接收信号强度,但由于在同一参考点上来自同一接入点的接收信号强度变化的无规律性,以及实时定位时,单一分类器对接收信号强度的分类性能差,针对此问题,提出增强高斯混合模型重建指纹数据库,并提出确定分模型个数的方法,利用多分类器投票的集成学习方法进行实时定位。在离线阶段,通过贝叶斯信息准则确定分模型个数,并利用期望最大值算法,对高斯混合模型进行参数估计,将参数估计的结果融合进指纹数据库中,即重建指纹数据库;在在线阶段,利用多种分类器进行投票决策的方式得出实时位置。实验结果表明,本文提出的方法平均定位误差为0.96 m,定位误差小于1 m的概率为92.34%,相比与增强高斯混合模型与随机森林模型,本文集成学习模型的定位精度提高了2.79%和0.92%。 展开更多
关键词 增强高斯混合模型 数据库重构 集成学习 期望最大值算法
下载PDF
Improved speech absence probability estimation based on environmental noise classification 被引量:2
2
作者 SON Young-ho LEE Sang-min 《Journal of Central South University》 SCIE EI CAS 2012年第9期2548-2553,共6页
An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking met... An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking method,requires seeking the "a priori" probability of speech absence that is derived by applying microphone input signal and the noise signal based on the estimated value of the "a posteriori" signal-to-noise ratio(SNR).To overcome this problem,first,the optimal values in terms of the perceived speech quality of a variety of noise types are derived.Second,the estimated optimal values are assigned according to the determined noise type which is classified by a real-time noise classification algorithm based on the Gaussian mixture model(GMM).The proposed algorithm estimates the speech absence probability using a noise classification algorithm which is based on GMM to apply the optimal parameter of each noise type,unlike the conventional approach which uses a fixed threshold and smoothing parameter.The performance of the proposed method was evaluated by objective tests,such as the perceptual evaluation of speech quality(PESQ) and composite measure.Performance was then evaluated by a subjective test,namely,mean opinion scores(MOS) under various noise environments.The proposed method show better results than existing methods. 展开更多
关键词 speech enhancement soft decision speech absence probability Gaussian mixture model (GMM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部