[Objective] This study aimed to screen the best synergistic material for Bt wettable powder and evaluate their synergistic effect. [Method] The synergism of six different kinds of additives for Bacillus thuringiensis ...[Objective] This study aimed to screen the best synergistic material for Bt wettable powder and evaluate their synergistic effect. [Method] The synergism of six different kinds of additives for Bacillus thuringiensis wettable powder (Bt WP) on the 2^nd instar larvae of Plutella xylostella was tested by method of leaf dipping in labora- tory. [Result] The mixtures of Bt with 0.1% ZnCl2, 0.5% ZnCl2, 1.0% ZnCl2, 1.0% MgCI2, 0.5% boric acid, 1.0% boric acid, 0.5% citric acid or 1.0% citric acid all ex- hibited synergistic effect, in which the synergistic effect of mixture containing 0.5% boric acid was the highest, with 17.2 synergistic ratio; followed by the mixture containing 1.0% ZnCl2, with 15.6 synergistic ratio. Moreover, addition of 0.5% boric acid could shorten the median lethal time of Bt wettable powder by about 10 h. After the mixtures of Bt with 0.5% boracic acid or 1.0% ZnCl2 was stored for 15 d at room temperature, toxicities of the two mixtures did not change significantly. [Conclusion] Boracic acid as the synergist of Bt wettable powder could not only increase insecti- cidal effect of Bt, but also accelerate its insecticidal rate. So, boracic acid could improve the disadvantages of Bt wettable powder such as poor insecticidal effect and slow insecticidal speed in a certain degree.展开更多
In this paper,we reported the differences in susceptibility to insecticides between adults and larvae of housefly, Musca domestica (L.),and the mechanisms for the differences.The larvae of housefly were much more to...In this paper,we reported the differences in susceptibility to insecticides between adults and larvae of housefly, Musca domestica (L.),and the mechanisms for the differences.The larvae of housefly were much more tolerant to insecticides than the adults,and the tolerance ratio to cyhalothrin was as high as 205.5 for susceptible strain.Mechanism studies showed that higher GST activity was associated with higher insecticide tolerance in the larvae.The co\|toxicity coefficient of the mixture of cyhalothrin and methylene dithiocyanate(4∶1) on pyrethroid\|resistant houseflies was 188.展开更多
Synergistic actions for mixtures of abamectin with other insecticides in some insect pests were evaluated, and the possible synergistic mechanism was studied by the comparison in toxicity and cuticular penetration of ...Synergistic actions for mixtures of abamectin with other insecticides in some insect pests were evaluated, and the possible synergistic mechanism was studied by the comparison in toxicity and cuticular penetration of abamectin between with and without other insecticides or synergists in Helicoverpa armigera larvae. The results of bioassay showed that horticultural mineral oil (HMO), hexaflumuron, chlorpyrifos, and some other insecticides were synergistic to abamectin with 152.0-420.0 of co-toxicity coefficient(CTC) in some agricultural insect pests. In topical application tests, HMO or piperonyl butoxide (PBO) increased the toxicity of abamectin in larvae of H. armigera, but the mortality was not affected by s,s,s-tributylphorotrithioate (DEF) and triphenylphosphate (TPP). The synergistic action of HMO was obviously higher than PBO, and when treated simultaneously with abamectin, HMO gave a more significant synergism than if treated 2 hours ahead. The highest synergistic effect (SE) was found in the mixture of ‘abamectin+HMO (1:206)'. The mortality did not increase or the toxicity drop, when a synergist or HMO was added into the mixture of ‘abamectin+HMO' or ‘abamectin+synergist', respectively. Results from the isotope tracing experiments showed that HMO significantly enhanced the penetration of ^3H-abamectin through the cuticle of H.armigera larvae, which resulted in the synergism of the mixture. The cuticular penetration of ^3H-abamectin was not accumulatively affected by chlorpyrifos, nor by hexaflumuron,though there was an inhibition within 30 seconds or 1 hour after treated by these two chemicals respectively. Results suggested that the synergism of abamectin mixed with hexaflumuron or chlorpyrifos might be related to inhibition of metabolic enzymes or target sites in the larvae.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(200903042-5)National Apple Industry Technology System Project of China(nycytx-08-04-01)~~
文摘[Objective] This study aimed to screen the best synergistic material for Bt wettable powder and evaluate their synergistic effect. [Method] The synergism of six different kinds of additives for Bacillus thuringiensis wettable powder (Bt WP) on the 2^nd instar larvae of Plutella xylostella was tested by method of leaf dipping in labora- tory. [Result] The mixtures of Bt with 0.1% ZnCl2, 0.5% ZnCl2, 1.0% ZnCl2, 1.0% MgCI2, 0.5% boric acid, 1.0% boric acid, 0.5% citric acid or 1.0% citric acid all ex- hibited synergistic effect, in which the synergistic effect of mixture containing 0.5% boric acid was the highest, with 17.2 synergistic ratio; followed by the mixture containing 1.0% ZnCl2, with 15.6 synergistic ratio. Moreover, addition of 0.5% boric acid could shorten the median lethal time of Bt wettable powder by about 10 h. After the mixtures of Bt with 0.5% boracic acid or 1.0% ZnCl2 was stored for 15 d at room temperature, toxicities of the two mixtures did not change significantly. [Conclusion] Boracic acid as the synergist of Bt wettable powder could not only increase insecti- cidal effect of Bt, but also accelerate its insecticidal rate. So, boracic acid could improve the disadvantages of Bt wettable powder such as poor insecticidal effect and slow insecticidal speed in a certain degree.
文摘In this paper,we reported the differences in susceptibility to insecticides between adults and larvae of housefly, Musca domestica (L.),and the mechanisms for the differences.The larvae of housefly were much more tolerant to insecticides than the adults,and the tolerance ratio to cyhalothrin was as high as 205.5 for susceptible strain.Mechanism studies showed that higher GST activity was associated with higher insecticide tolerance in the larvae.The co\|toxicity coefficient of the mixture of cyhalothrin and methylene dithiocyanate(4∶1) on pyrethroid\|resistant houseflies was 188.
文摘Synergistic actions for mixtures of abamectin with other insecticides in some insect pests were evaluated, and the possible synergistic mechanism was studied by the comparison in toxicity and cuticular penetration of abamectin between with and without other insecticides or synergists in Helicoverpa armigera larvae. The results of bioassay showed that horticultural mineral oil (HMO), hexaflumuron, chlorpyrifos, and some other insecticides were synergistic to abamectin with 152.0-420.0 of co-toxicity coefficient(CTC) in some agricultural insect pests. In topical application tests, HMO or piperonyl butoxide (PBO) increased the toxicity of abamectin in larvae of H. armigera, but the mortality was not affected by s,s,s-tributylphorotrithioate (DEF) and triphenylphosphate (TPP). The synergistic action of HMO was obviously higher than PBO, and when treated simultaneously with abamectin, HMO gave a more significant synergism than if treated 2 hours ahead. The highest synergistic effect (SE) was found in the mixture of ‘abamectin+HMO (1:206)'. The mortality did not increase or the toxicity drop, when a synergist or HMO was added into the mixture of ‘abamectin+HMO' or ‘abamectin+synergist', respectively. Results from the isotope tracing experiments showed that HMO significantly enhanced the penetration of ^3H-abamectin through the cuticle of H.armigera larvae, which resulted in the synergism of the mixture. The cuticular penetration of ^3H-abamectin was not accumulatively affected by chlorpyrifos, nor by hexaflumuron,though there was an inhibition within 30 seconds or 1 hour after treated by these two chemicals respectively. Results suggested that the synergism of abamectin mixed with hexaflumuron or chlorpyrifos might be related to inhibition of metabolic enzymes or target sites in the larvae.