In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly d...In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly different perspective turns the covered background regions into hole regions in the rendered video.This paper presents a depth enhanced image summarization generation model for the hole-filling via exploiting the texture fidelity and the geometry consistency between the hole and the remaining nearby regions.The texture fidelity and the geometry consistency are enhanced by drawing texture details and pixel-wise depth information into the energy cost of similarity measure correspondingly.The proposed approach offers significant improvement in terms of 0.2dB PSNR gain,0.06 SSIM gain and subjective quality enhancement for the hole-filling images in virtual viewpoint video.展开更多
Objective A classification and diagnosis model for psoriasis based on deep residual network is proposed in this paper.Which using deep learning technology to classify and diagnose psoriasis can help reduce the burden ...Objective A classification and diagnosis model for psoriasis based on deep residual network is proposed in this paper.Which using deep learning technology to classify and diagnose psoriasis can help reduce the burden of doctors,simplify the diagnosis and treatment process,and improve the quality of diagnosis.Methods Firstly,data enhancement,image resizings,and TFRecord coding are used to preprocess the input of the model,and then a 34-layer deep residual network(ResNet-34)is constructed to extract the characteristics of psoriasis.Finally,we used the Adam algorithm as the optimizer to train ResNet-34,used cross-entropy as the loss function of ResNet-34 in this study to measure the accuracy of the model,and obtained an optimized ResNet-34 model for psoriasis diagnosis.Results The experimental results based on k-fold cross validation show that the proposed model is superior to other diagnostic methods in terms of recall rate,F1-score and ROC curve.Conclusion The ResNet-34 model can achieve accurate diagnosis of psoriasis,and provide technical support for data analysis and intelligent diagnosis and treatment of psoriasis.展开更多
An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimat...An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference(JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usually not as bright as the atmospheric light,and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze image and is well suitable for implementing on the surveillance and obstacle detection systems.展开更多
文摘In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly different perspective turns the covered background regions into hole regions in the rendered video.This paper presents a depth enhanced image summarization generation model for the hole-filling via exploiting the texture fidelity and the geometry consistency between the hole and the remaining nearby regions.The texture fidelity and the geometry consistency are enhanced by drawing texture details and pixel-wise depth information into the energy cost of similarity measure correspondingly.The proposed approach offers significant improvement in terms of 0.2dB PSNR gain,0.06 SSIM gain and subjective quality enhancement for the hole-filling images in virtual viewpoint video.
基金We thank for the funding support from the Key Research and Development Plan of China(No.2017YFC1703306)Youth Project of Natural Science Foundation of Hunan Province(No.2019JJ50453)+2 种基金Project of Hunan Health Commission(No.202112072217)Open Fund Project of Hunan University of Traditional Chinese Medicine(No.2018JK02)General Project of Education Department of Hunan Province(No.19C1318).
文摘Objective A classification and diagnosis model for psoriasis based on deep residual network is proposed in this paper.Which using deep learning technology to classify and diagnose psoriasis can help reduce the burden of doctors,simplify the diagnosis and treatment process,and improve the quality of diagnosis.Methods Firstly,data enhancement,image resizings,and TFRecord coding are used to preprocess the input of the model,and then a 34-layer deep residual network(ResNet-34)is constructed to extract the characteristics of psoriasis.Finally,we used the Adam algorithm as the optimizer to train ResNet-34,used cross-entropy as the loss function of ResNet-34 in this study to measure the accuracy of the model,and obtained an optimized ResNet-34 model for psoriasis diagnosis.Results The experimental results based on k-fold cross validation show that the proposed model is superior to other diagnostic methods in terms of recall rate,F1-score and ROC curve.Conclusion The ResNet-34 model can achieve accurate diagnosis of psoriasis,and provide technical support for data analysis and intelligent diagnosis and treatment of psoriasis.
基金supported by the National Natural Science Foundation of China(61075013)the Joint Funds of the Civil Aviation(61139003)
文摘An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference(JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usually not as bright as the atmospheric light,and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze image and is well suitable for implementing on the surveillance and obstacle detection systems.