Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic...Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic activity compared to the pure BOC and N‐BOC samples. With 1.0wt% GO, 62% NO removal was obtained with N‐BOC‐GO. The factors enhancing the photocatalytic performance were the high electron‐withdrawing ability and high conductivity of GO and improved visible light‐harvesting ability of N‐BOC‐GO with a 3D hierarchical architecture due to the surface scattering and reflecting(SSR) effect. An effective charge transfer from N‐BOC to GO was demonstrated by the much weakened photoluminescene intensity of the N‐BOC‐GO composite. This work highlights the potential application of GO‐based photocatalysts in air purification.展开更多
Zinc oxide has a large energy gap and thus it has potential application in the field of solar cells by tuning the absorption of sunlight. In order to enhance its absorption of sunlight,dark color zinc oxides have been...Zinc oxide has a large energy gap and thus it has potential application in the field of solar cells by tuning the absorption of sunlight. In order to enhance its absorption of sunlight,dark color zinc oxides have been prepared by traditional hydrothermal method directly using a zinc foil as both source and substrate. We found that we could tune the optical properties of ZnO samples by changing the temperature. In particular, increasing temperature could significantly reduce the reflectivity of solar energy in the visible range. We speculate that the phenomenon is relevant to the sharp cone morphology of the ZnO nanorods grown on the surface of Zn foils, which furthermore enhance refraction and reflection of light in the nanorods. The capacity to improve the light absorption of ZnO may have a bright application in raising the efficiency of solar cells.展开更多
The structural,vibrational,and magnetic properties of well prepared Bi 1 x Y x FeO 3(x=0-0.1) powders are investigated by combining the X-ray diffraction,Raman scattering,differential scanning calorimetry,and magnetom...The structural,vibrational,and magnetic properties of well prepared Bi 1 x Y x FeO 3(x=0-0.1) powders are investigated by combining the X-ray diffraction,Raman scattering,differential scanning calorimetry,and magnetometry measurements.A structural symmetric breaking from the rhombohedral R3c to orthorhombic Pnma between x=0.07 and 0.1 is identified from the X-ray and Raman measurements,accompanying a ferroelectric-antiferroelectric phase transition.The remnant magnetization of Bi 0.9 Y 0.1 FeO 3 is about 15 times higher in magnitude compared to the pure BiFeO 3.Such a giant enhancement is suggested to result from the destruction of the spin cycloid accompanied with the structured transition.展开更多
Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhau...Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.展开更多
基金supported by the National Natural Science Foundation of China(21277097)the Key Projects in the National Science&Technology Pillar Program during the 12th Five-Year Plan Period(2012BAJ21B01)~~
文摘Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic activity compared to the pure BOC and N‐BOC samples. With 1.0wt% GO, 62% NO removal was obtained with N‐BOC‐GO. The factors enhancing the photocatalytic performance were the high electron‐withdrawing ability and high conductivity of GO and improved visible light‐harvesting ability of N‐BOC‐GO with a 3D hierarchical architecture due to the surface scattering and reflecting(SSR) effect. An effective charge transfer from N‐BOC to GO was demonstrated by the much weakened photoluminescene intensity of the N‐BOC‐GO composite. This work highlights the potential application of GO‐based photocatalysts in air purification.
基金supported by the National Natural Science Foundation of China(No.11575187)the National Key Research and Development Program(No.2016YFB0700205)
文摘Zinc oxide has a large energy gap and thus it has potential application in the field of solar cells by tuning the absorption of sunlight. In order to enhance its absorption of sunlight,dark color zinc oxides have been prepared by traditional hydrothermal method directly using a zinc foil as both source and substrate. We found that we could tune the optical properties of ZnO samples by changing the temperature. In particular, increasing temperature could significantly reduce the reflectivity of solar energy in the visible range. We speculate that the phenomenon is relevant to the sharp cone morphology of the ZnO nanorods grown on the surface of Zn foils, which furthermore enhance refraction and reflection of light in the nanorods. The capacity to improve the light absorption of ZnO may have a bright application in raising the efficiency of solar cells.
基金supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No.708070)the National Natural Science Foundation of China (GrantNos. 10874046 and 11104081)
文摘The structural,vibrational,and magnetic properties of well prepared Bi 1 x Y x FeO 3(x=0-0.1) powders are investigated by combining the X-ray diffraction,Raman scattering,differential scanning calorimetry,and magnetometry measurements.A structural symmetric breaking from the rhombohedral R3c to orthorhombic Pnma between x=0.07 and 0.1 is identified from the X-ray and Raman measurements,accompanying a ferroelectric-antiferroelectric phase transition.The remnant magnetization of Bi 0.9 Y 0.1 FeO 3 is about 15 times higher in magnitude compared to the pure BiFeO 3.Such a giant enhancement is suggested to result from the destruction of the spin cycloid accompanied with the structured transition.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2011CB707204)the National Natural Science Foundation of China(Grant No.50706020)
文摘Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.