In this paper, a novel structure of linear-in-dB gain control is introduced. Based on this structure, a wideband variable gain low noise amplifier (VGLNA) has been designed and implemented in 0.18μm RF CMOS technol...In this paper, a novel structure of linear-in-dB gain control is introduced. Based on this structure, a wideband variable gain low noise amplifier (VGLNA) has been designed and implemented in 0.18μm RF CMOS technology. The measured resuhs show a good linear-in-dB gain control characteristic with 15 dB dynamic range. It can operate in the frequency range of MHz and consumes 30mW from 1.8V power supply. The minimum noise figure is 4.1 dB at the 48 - 860 maximum gain and the input P1dB is greater than - 16.5dBm.展开更多
This paper investigates adaptive state feedback stabilization for a class of feedforward nonlinear systems with zero-dynamics, unknown linear growth rate and control coefficient. For design convenience, the state tran...This paper investigates adaptive state feedback stabilization for a class of feedforward nonlinear systems with zero-dynamics, unknown linear growth rate and control coefficient. For design convenience, the state transformation is first introduced and the new system is obtained. Then, the estimation law is constructed for the unknown control coefficient, and the state feedback controller is proposed with a gain updated on-line. By appropriate choice of the estimation law for the control coefficient and the dynamic gain, the states of the closed-loop system are globally bounded, and the state of the original system converges to zero. Finally, a simulation example is given to illustrate the correctness of the theoretical results.展开更多
文摘In this paper, a novel structure of linear-in-dB gain control is introduced. Based on this structure, a wideband variable gain low noise amplifier (VGLNA) has been designed and implemented in 0.18μm RF CMOS technology. The measured resuhs show a good linear-in-dB gain control characteristic with 15 dB dynamic range. It can operate in the frequency range of MHz and consumes 30mW from 1.8V power supply. The minimum noise figure is 4.1 dB at the 48 - 860 maximum gain and the input P1dB is greater than - 16.5dBm.
基金supported by the National Natural Science Foundations of China under Grant Nos.61104069,61325016,61273084,61374187 and 61473176Independent Innovation Foundation of Shandong University under Grant No.2012JC014
文摘This paper investigates adaptive state feedback stabilization for a class of feedforward nonlinear systems with zero-dynamics, unknown linear growth rate and control coefficient. For design convenience, the state transformation is first introduced and the new system is obtained. Then, the estimation law is constructed for the unknown control coefficient, and the state feedback controller is proposed with a gain updated on-line. By appropriate choice of the estimation law for the control coefficient and the dynamic gain, the states of the closed-loop system are globally bounded, and the state of the original system converges to zero. Finally, a simulation example is given to illustrate the correctness of the theoretical results.