期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
食品蛋白增维结构精密构筑研究进展
1
作者 李煦源 陈正行 王涛 《中国食品学报》 EI CAS CSCD 北大核心 2024年第4期420-430,共11页
增维结构为短程有序性单元结构在多维空间限域堆积,进而形成长程可控性高级结构,其特征为各单元结构定向排布且在尺度、维度上均具高度可编程性。鉴于动态化设计逻辑及标准化构筑机制,这种基于类似单元结构所形成的空间多样化高级组织架... 增维结构为短程有序性单元结构在多维空间限域堆积,进而形成长程可控性高级结构,其特征为各单元结构定向排布且在尺度、维度上均具高度可编程性。鉴于动态化设计逻辑及标准化构筑机制,这种基于类似单元结构所形成的空间多样化高级组织架构,在功能食品的开发中具有重要应用。目前,增维结构的设计开发大多基于人工高分子或工程化蛋白,而在天然蛋白结构中鲜有报道,缺乏对蛋白折叠的过程控制是其首要原因。本文基于蛋白质共架技术,从介观重构、纳米雕刻及增维定制3个方面综述食品蛋白增维结构精密构筑研究进展。探讨构建食品蛋白高值化利用关键技术体系的思路和方法,以期为我国食品蛋白产业的发展提供理论和实践支持。 展开更多
关键词 增维结构 限域堆积 蛋白改性 精密构筑
下载PDF
Thermal Structure of Glass Fiber Reinforce Plastic Support Structure 被引量:2
2
作者 刘康 汪荣顺 +1 位作者 石玉美 顾安忠 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第3期370-374,共5页
The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vesse... The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications. 展开更多
关键词 glass fiber reinforced plastics (GFRP) tube support structure CRYOGENIC temperature stress
下载PDF
Defect feature recognition method of glass fibre-reinforced structure based on visual image analysis 被引量:1
3
作者 HUANG Jingde 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期61-67,共7页
Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other f... Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other factors,the internal structure of this kind of structure gradually evolves into a defect state and expands to form defects such as bubbles,scratches,shorts,cracks,cavitation erosion,stains and other defects.These defects have posed a serious threat to the quality and performance of GFR structure.From the propagation process of GFR structure defects,its duration is random and may be very short.Therefore,designing a scientific micro defect intelligent detection system for GFR structure to enhance the maintainability of GFR structure will not only help to reduce emergencies,but also have positive theoretical significance and application value to ensure safe production and operation.Firstly,the defect detection mechanism of GFR structure is discussed,and the defect detection principle and defect area identification method are analyzed.Secondly,the processing process of defect edge signal is discussed,a classifier based on MLP is established,and the algorithm of the classifier is designed.Finally,the effectiveness of this method is proved by real-time monitoring and defect diagnosis of a typical GFR structure.The experimental results show that this method improves the efficiency of defect detection and has high defect feature recognition accuracy,which provides a new idea for the on-line detection of GFR structure defects. 展开更多
关键词 glass fibre-reinforced(GFR)structure multi-layer perceptron(MLP) machine vision defect detection
下载PDF
Comparison between the preparation,structure and mechanical properties of long fiber reinforced thermoplastics and short fiber reinforced thermoplastic 被引量:3
4
作者 Fang Kun Yang Jie +2 位作者 Wu Sizhu Li Mei Ma Mingtu 《Engineering Sciences》 EI 2012年第6期83-88,96,共7页
This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experi... This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experiment and theory results showed that the mechanical properties of long glass fiber reinforced thermoplastics pellets (LGFRT) have been enhanced better than that of short glass fiber reinforced thermoplastics pellets (SGFRT) manufactured by molding procession. After regulation of the relative humidity by 50 % , the mechanical properties of 30 % ( weight percent) short glass fiber content in SFT ( SFT-PA6-SGF30 ) are similar to that of 40 % long glass fiber content in LFT. Howev- er, the density of the latter is about 17 % lower than that of the former. Thus, the corresponding weight of products is reduced by 13 % ;output rate is increased by 21% , and the cost is therefore significantly lowered. And it has the fol- lowing advantages: impact strength is increased by 87 % ; the proportion is reduced by 20 % ; molding cycle is short- ened by 10 % ;materials cost is saved by 20 % -30 % and the final total cost is saved by 30 % -40 %. So LFT (LFT-PP-LGF40) can replace SFT (SFT-PA6-SGF30) with the similar basic mechanical properties under normal tem- perature or 160 ℃ lower. 展开更多
关键词 long glass fiber reinforced thermoplastics short glass fiber reinforced thermoplastics mechanical properties comparison
下载PDF
Elements of Structural Masonry Reinforced with Sisal Fibers
5
作者 Indara Soto Izquierdo Marcio Antonio Ramalho 《Journal of Civil Engineering and Architecture》 2013年第2期141-146,共6页
There is great interest in the use of natural fibers as reinforcement to obtain new construction materials due to its low cost, high availability and reduced energy consumption for its production. This paper evaluates... There is great interest in the use of natural fibers as reinforcement to obtain new construction materials due to its low cost, high availability and reduced energy consumption for its production. This paper evaluates the incorporation of sisal fibers of 20 mm and 40 mm in length and volume fraction of 0.5% and 1% for concrete masonry structural blocks, and determines the use of these units to build prisms and mini-walls. Laboratory tests were carried out to characterize the physical of blocks and mortar, in addition to the axial compression tests of the units, prisms, and mini-walls. The sisal had low apparent density and high water absorption, which is a common feature of such material due to the high incidence of permeable pores. The physical properties of the blocks with and without addition complied with the standard requirements established to validate their use. The obtained results showed that the fiber-reinforced mini-walls obtained values very close to or even higher than those obtained for the mini-walls without fibers, demonstrating better performance than the blocks and prisms. 展开更多
关键词 COMPOSITES sisal fiber concrete block compressive strength.
下载PDF
Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects 被引量:14
6
作者 Krishna Chaitanya Nune Shujun Li R. Devesh Kumar Misra 《Science China Materials》 SCIE EI CSCD 2018年第4期455-474,共20页
We elucidate here the process-structure-property relationships in three-dimensional(3 D) implantable titanium alloy biomaterials processed by electron beam melting(EBM) that is based on the principle of additive m... We elucidate here the process-structure-property relationships in three-dimensional(3 D) implantable titanium alloy biomaterials processed by electron beam melting(EBM) that is based on the principle of additive manufacturing. The conventional methods for processing of biomedical devices including freeze casting and sintering are limited because of the difficulties in adaptation at the host site and difference in the micro/macrostructure, mechanical, and physical properties with the host tissue. In this regard, EBM has a unique advantage of processing patient-specific complex designs, which can be either obtained from the computed tomography(CT) scan of the defect site or through a computeraided design(CAD) program. This review introduces and summarizes the evolution and underlying reasons that have motivated 3 D printing of scaffolds for tissue regeneration.The overview comprises of two parts for obtaining ultimate functionalities. The first part focuses on obtaining the ultimate functionalities in terms of mechanical properties of 3 D titanium alloy scaffolds fabricated by EBM with different characteristics based on design, unit cell, processing parameters, scan speed, porosity, and heat treatment. The second part focuses on the advancement of enhancing biological responses of these 3 D scaffolds and the influence of surface modification on cell-material interactions. The overview concludes with a discussion on the clinical trials of these 3 D porous scaffolds illustrating their potential in meeting the current needs of the biomedical industry. 展开更多
关键词 Electron beam melting 3D printing tissue engineering mechanical properties BIOCOMPATIBILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部