In this paper, we mainly study the preparation of an optical biosensor based on porous silicon(PSi) Bragg mirror and its feasibility for biological detection. The quantum dot(QD) labeled biotin was pipetted onto strep...In this paper, we mainly study the preparation of an optical biosensor based on porous silicon(PSi) Bragg mirror and its feasibility for biological detection. The quantum dot(QD) labeled biotin was pipetted onto streptavidin functionalized PSi Bragg mirror samples, the affinity reaction between QD labeled biotin and streptavidin in PSi occurred, so the QDs were indirectly connected to the PSi. The fluorescence of QD enhanced the signal of biological reactions in PSi. The performance of the sensor is verified by detecting the fluorescence of the QD in PSi. Due to the fluorescence intensity of the QDs can be enhanced by PSi Bragg mirror, the sensitivity of the PSi optical biosensor will be improved.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61575168 and 61665012)the Xinjiang Science and Technology Project(No.201412112)
文摘In this paper, we mainly study the preparation of an optical biosensor based on porous silicon(PSi) Bragg mirror and its feasibility for biological detection. The quantum dot(QD) labeled biotin was pipetted onto streptavidin functionalized PSi Bragg mirror samples, the affinity reaction between QD labeled biotin and streptavidin in PSi occurred, so the QDs were indirectly connected to the PSi. The fluorescence of QD enhanced the signal of biological reactions in PSi. The performance of the sensor is verified by detecting the fluorescence of the QD in PSi. Due to the fluorescence intensity of the QDs can be enhanced by PSi Bragg mirror, the sensitivity of the PSi optical biosensor will be improved.