期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
支持增量图数据的超图查询算法研究 被引量:1
1
作者 孙勤红 《四川理工学院学报(自然科学版)》 CAS 2015年第3期27-32,共6页
当前大部分图查询算法都是针对静态图数据,不适用于现实应用中不断更新的图数据。针对这一问题,提出支持增量图数据的超图查询算法。该算法将数据图分解成直至单个顶点的子图,然后从单个顶点的子图开始求它到查询图的子图同构,直到求出... 当前大部分图查询算法都是针对静态图数据,不适用于现实应用中不断更新的图数据。针对这一问题,提出支持增量图数据的超图查询算法。该算法将数据图分解成直至单个顶点的子图,然后从单个顶点的子图开始求它到查询图的子图同构,直到求出数据图到查询图的子图同构结果,算法在数据图增加时只需将新加入的数据图进行分解即可,不必重新计算。通过分析证明,所提算法时间和空间复杂度不随数据图的增加而呈线性增长,节省了大量时间和空间代价。 展开更多
关键词 增量图数据 查询 算法 同构
下载PDF
No-Reference Quality Assessment of Enhanced Images
2
作者 Leida Li Wei Shen +3 位作者 Ke Gu Jinjian Wu Beijing Chen Jianying Zhang 《China Communications》 SCIE CSCD 2016年第9期121-130,共10页
Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remain... Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric. 展开更多
关键词 image enhancement quality assessment NO-REFERENCE perceptual feature SVR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部