期刊文献+
共找到1,207篇文章
< 1 2 61 >
每页显示 20 50 100
用于手写数字识别的增量式模糊支持向量机 被引量:1
1
作者 刘宏兵 柳春华 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2014年第3期421-424,共4页
根据不同训练样本对于训练过程具有不同的贡献度,构造增量函数.通过设置增量函数的阈值,构造了用于手写数字识别的增量式模糊支持向量机.选取机器学习与智能系统中心的手写数字识别问题来验证文中方法的优越性,与模糊支持向量机相比,文... 根据不同训练样本对于训练过程具有不同的贡献度,构造增量函数.通过设置增量函数的阈值,构造了用于手写数字识别的增量式模糊支持向量机.选取机器学习与智能系统中心的手写数字识别问题来验证文中方法的优越性,与模糊支持向量机相比,文中方法加快了训练过程,提高了识别精度. 展开更多
关键词 手写数字 模糊支持向量 增量函数 增量式模糊支持向量机
下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
2
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
下载PDF
基于特征加权混合隶属度的模糊孪生支持向量机 被引量:1
3
作者 吕思雨 赵嘉 +2 位作者 吴烈阳 张翼英 韩龙哲 《南昌工程学院学报》 CAS 2024年第1期93-101,118,共10页
模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对... 模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对以上问题,提出了一种基于特征加权混合隶属度的FM-FTSVM。首先计算每个特征的信息增益,并依据信息增益值的大小为特征赋予权重,降低不相关或弱相关特征的作用,使其能更好地应用于高维数据分类;然后,为每一类样本构造一个最小包围球计算基于紧密度的特征加权隶属度,并结合基于距离的特征加权隶属度得到特征加权混合隶属度,综合考虑样本点到类中心的特征加权欧式距离和样本间的紧密程度,可更好识别离群点或噪声数据;最后,融合特征加权核函数,降低不相关特征对核函数或距离计算产生的影响。与对比算法在人工数据集、高维数据集和UCI数据集上进行比较,发现本文提出的方法在区分离群点、噪声和有效样本上有明显优势,且在高维数据集上可获得更好分类效果。 展开更多
关键词 模糊孪生支持向量 特征加权 信息增益 紧密度 隶属度 高维数据
下载PDF
自适应模糊支持向量机邻近增量算法在变压器故障诊断中的应用 被引量:9
4
作者 刘同杰 刘志刚 韩志伟 《电力系统保护与控制》 EI CSCD 北大核心 2010年第17期47-52,共6页
提出了一种基于自适应模糊支持向量机增量算法的变压器故障诊断方法。对变压器故障诊断采取分层结构,以模式识别思想提取与分类模式密切相关的输入特征,有效地抑制了冗余信息的干扰;采用参数自适应优化算法增强了SVM参数选择的灵活性,... 提出了一种基于自适应模糊支持向量机增量算法的变压器故障诊断方法。对变压器故障诊断采取分层结构,以模式识别思想提取与分类模式密切相关的输入特征,有效地抑制了冗余信息的干扰;采用参数自适应优化算法增强了SVM参数选择的灵活性,加快了算法的收敛速度。邻近增量算法提高了诊断模型的精度与对于新样本的学习能力,与普通的多分类支持向量机以及多分类模糊支持向量机算法相比,该算法具有较好的收敛性和良好的诊断效果。 展开更多
关键词 模糊支持向量 增量算法 隶属度 自适应 变压器 油中溶解气体
下载PDF
自适应模糊支持向量机增量算法在变压器故障诊断中的应用 被引量:4
5
作者 董秀成 陶加贵 +1 位作者 王海滨 刘帆 《电力自动化设备》 EI CSCD 北大核心 2010年第11期48-52,共5页
利用油中溶解气体对变压器进行故障有无以及故障类别判断时,为抑制冗余信息的干扰,提取与分类模式密切相关的特征作为每层诊断模型的输入;增量学习算法通过提取模型的支持向量和误判样本,逐步积累样本的空间分布知识,提高诊断模型的精... 利用油中溶解气体对变压器进行故障有无以及故障类别判断时,为抑制冗余信息的干扰,提取与分类模式密切相关的特征作为每层诊断模型的输入;增量学习算法通过提取模型的支持向量和误判样本,逐步积累样本的空间分布知识,提高诊断模型的精度与训练速度,同时剔除对构建模型无贡献的样本以节约存储空间。为提升算法的收敛速度,采用参数自适应优化算法动态搜索模糊支持向量机的模型参数。最后,通过实例将该算法与普通的多分类支持向量机以及多分类模糊支持向量机相比,得出该算法具有相对较好的收敛性和诊断效果。 展开更多
关键词 模糊支持向量 增量算法 隶属度 自适应 油中溶解气体
下载PDF
直觉模糊的结构化最小二乘孪生支持向量机
6
作者 张法滢 吕莉 +2 位作者 韩龙哲 刘东晓 樊棠怀 《应用科学学报》 CAS CSCD 北大核心 2024年第2期350-363,共14页
针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squa... 针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。 展开更多
关键词 支持向量 孤立森林 结构信息 直觉模糊 聚类 协方差
下载PDF
增量式最小二乘法分类器与增量式支持向量机的对比 被引量:3
7
作者 朱真峰 郭跃飞 薛向阳 《小型微型计算机系统》 CSCD 北大核心 2011年第3期493-498,共6页
在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘... 在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘法的增量式方法.该增量式方法通过对矩阵运算的恒等推导,把矩阵求逆问题转变成了除法运算,得到了简单的模型参数更新公式,从而获得了和ISVM同样的预测精度,且在处理高维数据时运行效率更高.在合成数据及图像和生物数据上的试验表明该增量式方法优于ISVM方法. 展开更多
关键词 监督学习 增量式学习 增量式近似支持向量 高维 增量式最小二乘法
下载PDF
基于支持向量机的增量式算法 被引量:3
8
作者 黄启春 刘仰光 何钦铭 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第12期2121-2126,共6页
为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机... 为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机具有类似的数学形式的凸二次规划问题.证明了在可分情况下,如果新增加的样本不是位于边界区,那么增量式过程既不会改变分类平面也不会改变分类平面的表达.与现有的增量式支持向量机算法相比,该算法无需额外计算就可实现增量式的逆过程并且训练时间与增量式步骤数成反比.实验结果表明,该算法满足稳定性、能够不断改进性能以及性能回复三个准则. 展开更多
关键词 器学习 模式分类 支持向量 增量式算法
下载PDF
一类增量式支持向量机的分析 被引量:2
9
作者 郑关胜 王建东 +1 位作者 顾彬 於跃成 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第1期113-118,共6页
针对训练数据发生增量改变时,标准一类支持向量机的批处理算法需要重新进行训练,不适合在线增量环境学习的问题,提出一种详细的增量式标准一类分类向量机算法,并通过理论分析对该算法的可行性和有限收敛性进行了证明,确保该算法的每步... 针对训练数据发生增量改变时,标准一类支持向量机的批处理算法需要重新进行训练,不适合在线增量环境学习的问题,提出一种详细的增量式标准一类分类向量机算法,并通过理论分析对该算法的可行性和有限收敛性进行了证明,确保该算法的每步调整都是可靠的,并确保该算法通过有限步调整最终收敛到问题的最优解。在标准数据集上的实验结果验证了理论分析的正确性。 展开更多
关键词 一类支持向量 增量式学习 可行性分析 收敛性分析
下载PDF
增量式剪枝最小二乘支持向量机的时间序列预测 被引量:1
10
作者 王晓兰 康蕾 《微型电脑应用》 2009年第6期12-13,6,共3页
根据分块矩阵计算公式和支持向量机核函数矩阵本身特点,在增量式最小二乘支持向量机算法的基础上,通过引入剪枝方法改善最小二乘支持向量机的稀疏性,并将这种方法应用于时间序列预测,试验表明这一方法在预测精度及速度上具有一定的优越性。
关键词 时间序列预测 最小二乘支持向量 增量式算法 剪枝算法
下载PDF
鲁棒的模糊最小二乘双参数间隔支持向量机算法
11
作者 杨贵燕 黄成泉 +3 位作者 罗森艳 蔡江海 王顺霞 周丽华 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第6期653-665,共13页
针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每... 针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能. 展开更多
关键词 双参数间隔支持向量 孪生支持向量 模糊隶属度 K-近邻
下载PDF
一种增量式的代价敏感支持向量机 被引量:5
12
作者 权鑫 顾韵华 +1 位作者 郑关胜 顾彬 《中国科学技术大学学报》 CAS CSCD 北大核心 2016年第9期727-735,共9页
代价敏感学习是机器学习中一个重要的领域.由Masnadi等提出的代价敏感的支持向量机通过将铰链损失函数代价敏感化来处理代价敏感问题,比传统的代价敏感学习方法具有更好的泛化精度.现实中的数据往往是通过在线增量式获取的,而传统的全... 代价敏感学习是机器学习中一个重要的领域.由Masnadi等提出的代价敏感的支持向量机通过将铰链损失函数代价敏感化来处理代价敏感问题,比传统的代价敏感学习方法具有更好的泛化精度.现实中的数据往往是通过在线增量式获取的,而传统的全量式学习算法每次增加样本时都需要重新从头计算,因此浪费了很多时间.为了使得代价敏感的支持向量机能够在在线学习的场景下具有更高的效率,提出了一种增量式的代价敏感支持向量机算法.该算法可以在新增样本时直接更新已有的训练过的模型,不需要从头开始重新训练.在多个数据集上的实验结果也显示出了该方法与传统的批处理方法相比,在速度上的具有显著的优势. 展开更多
关键词 在线学习 增量式学习 代价敏感学习 支持向量
下载PDF
基于模糊支持向量机的开关柜运行故障实时监测方法
13
作者 孙鹏 《电工技术》 2024年第3期150-152,161,共4页
常规的开关柜运行故障实时监测方法主要使用GSY20测量传感器采集故障信号,易受局部放电作用影响,导致监测的异常幅值与实际异常幅值相差较大。因此,需要基于模糊支持向量机设计一种全新的开关柜运行故障实时监测方法。利用模糊支持向量... 常规的开关柜运行故障实时监测方法主要使用GSY20测量传感器采集故障信号,易受局部放电作用影响,导致监测的异常幅值与实际异常幅值相差较大。因此,需要基于模糊支持向量机设计一种全新的开关柜运行故障实时监测方法。利用模糊支持向量机进行了故障实时监测分类,构建了开关柜运行故障实时监测中心,从而实现了开关柜运行故障实时监测。实验结果表明,所设计的监测方法监测的异常幅值与实际异常幅值接近,监测效果较好。 展开更多
关键词 模糊支持向量 开关柜 运行 故障 实时 监测
下载PDF
基于弹球损失模糊支持向量机的客户认购定期存款预测分析
14
作者 匡维波 《电子商务评论》 2024年第3期8568-8578,共11页
本文基于UCI机器学习库中的一家银行机构营销活动的数据,以客户是否认购定期存款为响应变量,以9个描述客户信息以及社会经济状况的离散和连续指标作为解释变量建立预测模型。提出了一种改进的弹球损失模糊支持向量机(Pin-FSVM)预测模型... 本文基于UCI机器学习库中的一家银行机构营销活动的数据,以客户是否认购定期存款为响应变量,以9个描述客户信息以及社会经济状况的离散和连续指标作为解释变量建立预测模型。提出了一种改进的弹球损失模糊支持向量机(Pin-FSVM)预测模型,旨在提高金融服务行业中银行识别潜在客户认购定期存款的准确性和效率。Pin-FSVM模型通过融合弹球损失函数和模糊隶属度的概念,优化了传统模糊支持向量机的性能。该模型在含噪声数据环境下维持了预测准确率,并有效处理了数据中的不确定性。在应用于银行客户认购存款的预测实践中,Pin-FSVM成功识别出更可能选择定期存款的客户,显著提升了预测效果,为银行精准识别和服务客户群体提供了有力工具。This paper is based on data from the UCI machine learning repository on the marketing activities of a banking institution, with whether a customer subscribes to a time deposit as the response variable, and nine discrete and continuous indicators describing the customer’s information as well as his socio-economic status as the explanatory variables. In this paper, an improved Pinball Loss Fuzzy Support Vector Machine (Pin-FSVM) prediction model is proposed with the aim of improving the accuracy and efficiency of banks in the financial services industry in identifying potential customers to subscribe to time deposits. The Pin-FSVM model optimises the performance of the traditional fuzzy support vector machine by incorporating the concepts of the Pinball Loss Function and the Fuzzy Affiliation Degree. The model maintains prediction accuracy in noisy data environments and effectively handles the uncertainty in the data. In the application to the practice of predicting bank customers’ subscription deposits, Pin-FSVM successfully identifies customers who are more likely to choose time deposits, which significantly improves the prediction effect and provides a powerful tool for banks to accurately identify and serve their customer groups. 展开更多
关键词 弹球损失函数 模糊支持向量 定期存款 预测模型
下载PDF
基于模糊支持向量机的线路继电保护光纤通信应用技术
15
作者 姚明哲 张恒滔 侯驰骋 《无线互联科技》 2024年第18期53-55,共3页
传统的继电保护方法往往依赖于主观因素,难以适应复杂多变的运行环境。因此,文章研究新的继电保护方法,提出基于模糊支持向量机的线路继电保护光纤通信应用技术。文章采用光纤传输作为通信装置中的通信技术,设计继电保护光纤通信装置结... 传统的继电保护方法往往依赖于主观因素,难以适应复杂多变的运行环境。因此,文章研究新的继电保护方法,提出基于模糊支持向量机的线路继电保护光纤通信应用技术。文章采用光纤传输作为通信装置中的通信技术,设计继电保护光纤通信装置结构,采集线路状态数据,输入模糊支持向量机模型进行分类,根据分类结果,判断线路的健康状况、负载情况等关键信息,构建基于模糊支持向量机的线路实时状态传输通信流程,实现线路继电保护光纤通信技术应用。实验结果表明:所设计技术能够有效地提高继电保护的处理效率。 展开更多
关键词 光纤通信应用技术 线路继电 电力系统 模糊支持向量
下载PDF
增量式约简最小二乘孪生支持向量回归机 被引量:7
16
作者 曹杰 顾斌杰 +1 位作者 熊伟丽 潘丰 《计算机科学与探索》 CSCD 北大核心 2021年第3期553-563,共11页
为了解决增量式最小二乘孪生支持向量回归机存在构成的核矩阵无法很好地逼近原核矩阵的问题,提出了一种增量式约简最小二乘孪生支持向量回归机(IRLSTSVR)算法。该算法首先利用约简方法,判定核矩阵列向量之间的相关性,筛选出用于构成核... 为了解决增量式最小二乘孪生支持向量回归机存在构成的核矩阵无法很好地逼近原核矩阵的问题,提出了一种增量式约简最小二乘孪生支持向量回归机(IRLSTSVR)算法。该算法首先利用约简方法,判定核矩阵列向量之间的相关性,筛选出用于构成核矩阵列向量的样本作为支持向量以降低核矩阵中列向量的相关性,使得构成的核矩阵能够更好地逼近原核矩阵,保证解的稀疏性。然后通过分块矩阵求逆引理高效增量更新逆矩阵,进一步缩短了算法的训练时间。最后在基准测试数据集上验证算法的可行性和有效性。实验结果表明,与现有的代表性算法相比,IRLSTSVR算法能够获得稀疏解和更接近离线算法的泛化性能。 展开更多
关键词 最小二乘 孪生支持向量回归(TSVR) 约简方法 增量式学习
下载PDF
模糊多类支持向量机及其在入侵检测中的应用 被引量:49
17
作者 李昆仑 黄厚宽 +2 位作者 田盛丰 刘振鹏 刘志强 《计算机学报》 EI CSCD 北大核心 2005年第2期274-280,共7页
针对支持向量机理论中现存的问题:多类分类问题和对于噪音数据的敏感性,提出了一种模糊多类支持向量机算法.该算法是在Weston等人提出的多类SVM分类器的直接构造方法中引入模糊成员函数,针对每个输入数据对分类结果的不同影响,该模糊成... 针对支持向量机理论中现存的问题:多类分类问题和对于噪音数据的敏感性,提出了一种模糊多类支持向量机算法.该算法是在Weston等人提出的多类SVM分类器的直接构造方法中引入模糊成员函数,针对每个输入数据对分类结果的不同影响,该模糊成员函数得到相应的值,由此可以得到不同的惩罚值,并且在构造分类超平面时,可以忽略那些对分类结果影响很小的数据.在充分的数值实验基础上,将文中提出的方法应用于当前一个重要的应用领域———计算机网络入侵检测问题,并得到了较好的实验结果.理论分析与数值实验都表明,该算法是切实可行的,并具有良好的鲁棒性. 展开更多
关键词 多类分类问题 支持向量(SVM) 模糊成员函数 入侵检测
下载PDF
基于灰关联和模糊支持向量机的变压器油中溶解气体浓度的预测 被引量:27
18
作者 司马莉萍 舒乃秋 +2 位作者 左婧 王波 彭辉 《电力系统保护与控制》 EI CSCD 北大核心 2012年第19期41-46,共6页
提出一种基于灰关联分析和模糊支持向量机的电力变压器油中溶解气体浓度预测模型。该模型考虑了变压器油温、负荷对油中气体浓度的影响,先利用灰关联度分析各因素间的相关性,提取影响气体浓度的主要因素作为支持向量机回归建模的输入样... 提出一种基于灰关联分析和模糊支持向量机的电力变压器油中溶解气体浓度预测模型。该模型考虑了变压器油温、负荷对油中气体浓度的影响,先利用灰关联度分析各因素间的相关性,提取影响气体浓度的主要因素作为支持向量机回归建模的输入样本属性。再将模糊数学和支持向量机结合起来,引入模糊隶属函数,将样本按照时间由近及远赋予由大到小的权重,反映出近期数据对后续预测结果的影响大于早期数据。该模型提高了预测精度,克服了传统支持向量机和只考虑某种或全部气体预测方法的不足。通过实例分析,验证了模型的有效性和优越性。 展开更多
关键词 变压器 油中溶解气体 灰关联分析 模糊支持向量 预测
下载PDF
基于模糊聚类和支持向量机的短期光伏功率预测 被引量:33
19
作者 于秋玲 许长清 +3 位作者 李珊 刘洪 宋毅 刘晓鸥 《电力系统及其自动化学报》 CSCD 北大核心 2016年第12期115-118,129,共5页
本文提出了一种基于模糊聚类和支持向量机的光伏短期功率预测方法。通过气象信息建立模糊相似矩阵将光伏发电功率历史样本划分为若干类,然后通过分类识别获得与预测日最相似的一类历史日样本集,将其与预测日的气象因素作为预测模型的输... 本文提出了一种基于模糊聚类和支持向量机的光伏短期功率预测方法。通过气象信息建立模糊相似矩阵将光伏发电功率历史样本划分为若干类,然后通过分类识别获得与预测日最相似的一类历史日样本集,将其与预测日的气象因素作为预测模型的输入样本建立支持向量机光伏发电功率预测模型,并利用余一法对构建的支持向量机模型进行核参数和惩罚参数的优化。根据实际数据对所提模型进行验证,计算分析了预测误差,结果表明该方法具有较高的预测精度,对光伏发电预测具有一定的参考价值。 展开更多
关键词 气象信息 模糊聚类 支持向量 光伏功率 短期预测
下载PDF
基于样本之间紧密度的模糊支持向量机方法 被引量:84
20
作者 张翔 肖小玲 徐光祐 《软件学报》 EI CSCD 北大核心 2006年第5期951-958,共8页
针对传统支持向量机方法中存在对噪声或野值敏感的问题,提出了一种基于紧密度的模糊支持向量机方法.在确定样本的隶属度时,不仅考虑了样本与类中心之间的关系,还考虑了类中各个样本之间的关系.通过样本之间的紧密度来描述类中各个样本... 针对传统支持向量机方法中存在对噪声或野值敏感的问题,提出了一种基于紧密度的模糊支持向量机方法.在确定样本的隶属度时,不仅考虑了样本与类中心之间的关系,还考虑了类中各个样本之间的关系.通过样本之间的紧密度来描述类中各个样本之间的关系,利用包围同一类中样本的最小球半径大小来度量样本之间的紧密度.样本的隶属度依据样本在球中的位置,按照不同的规律确定.与基于样本与类中心之间关系构建的模糊支持向量机方法相比,该方法有利于将野值或含噪声样本与有效样本进行区分.实验结果表明,与传统支持向量机方法及基于样本与类中心之间关系的模糊支持向量机方法相比,基于紧密度的模糊支持向量机方法具有更好的抗噪性能及分类能力. 展开更多
关键词 模糊支持向量 紧密度 分类
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部